Appendix A Trends in International Mathematics and Science Study (TIMSS): Overview

A. 1 TIMSS 2011: introduction

The TIMSS 2011 survey is the fifth in the IEA's ${ }^{142}$ series of comparative international surveys of mathematics and science achievement. TIMSS is administered on a four-yearly cycle, so the 2011 survey updates the picture of performance from 2007. Earlier cycles took place in 2003, 1999 and 1995. ${ }^{143}$ The next TIMSS cycle is planned for 2015.

A. 2 TIMSS 2011 participants

TIMSS 2011 involved 74 participants: 60 countries and 14 benchmarking participants, ${ }^{144}$ taking part at one or both of the target grades: 'fourth grade', ages 9-10 and 'eighth grade', ages 13-14 (Year 5 and Year 9 respectively in England). Participant numbers were:

- Fourth grade -57 participants (50 countries and 7 benchmarking participants)
- Eighth grade - 56 participants (42 countries and 14 benchmarking participants). ${ }^{145}$

Table A. 1 gives the list of participants at each grade, and Exhibit A. 1 in the international mathematics and science reports indicates the previous cycles in which each participant was involved.

The TIMSS 2011 participants are varied, ranging from highly developed countries or regions through to developing ones. Their education systems also vary, differing for example in the age at which children start school. ${ }^{146}$ More information about the educational system in each participating country and region can be found in the TIMSS encyclopaedia (Mullis et al, 2012).

[^0]Table A1 TIMSS 2011 participants

Participant	4th grade, ages 9-10	8th grade, ages 13-14	Participant	4th grade, ages 9-10	8th grade, ages 13-14
Countries			Countries		
Armenia	\checkmark	\checkmark	Macedonia, Rep. of		\checkmark
Australia	\checkmark	\checkmark	Malaysia		\checkmark
Austria	\checkmark		Malta	\checkmark	
Azerbaijan	\checkmark		Morocco	\checkmark	\checkmark
Bahrain	\checkmark	\checkmark	Netherlands	\checkmark	
Belgium (Flemish)	\checkmark		New Zealand	\checkmark	\checkmark
Chile	\checkmark	\checkmark	Northern Ireland	\checkmark	
Chinese Taipei	\checkmark	\checkmark	Norway	\checkmark	\checkmark
Croatia	\checkmark		Oman	\checkmark	\checkmark
Czech Republic	\checkmark		Palestinian Nat'l Auth.		\checkmark
Denmark	\checkmark		Poland	\checkmark	
England	\checkmark	\checkmark	Portugal	\checkmark	
Finland	\checkmark	\checkmark	Qatar	\checkmark	\checkmark
Georgia	\checkmark	\checkmark	Romania	\checkmark	\checkmark
Germany	\checkmark		Russian Federation	\checkmark	\checkmark
Ghana		\checkmark	Saudi Arabia	\checkmark	\checkmark
Hong Kong SAR	\checkmark	\checkmark	Serbia	\checkmark	
Hungary	\checkmark	\checkmark	Singapore	\checkmark	\checkmark
Indonesia		\checkmark	Slovak Republic	\checkmark	
Iran, Islamic Rep. of	\checkmark	\checkmark	Slovenia	\checkmark	\checkmark
Ireland, Rep. of	\checkmark		Spain	\checkmark	
Israel		\checkmark	Sweden	\checkmark	\checkmark
Italy	\checkmark	\checkmark	Syrian Arab Republic		\checkmark
Japan	\checkmark	\checkmark	Thailand	\checkmark	\checkmark
Jordan		\checkmark	Tunisia	\checkmark	\checkmark
Kazakhstan	\checkmark	\checkmark	Turkey	\checkmark	\checkmark
Korea, Rep. of	\checkmark	\checkmark	Ukraine		\checkmark
Kuwait	\checkmark		United Arab Emirates	\checkmark	\checkmark
Lebanon		\checkmark	United States	\checkmark	\checkmark
Lithuania	\checkmark	\checkmark	Yemen	\checkmark	
Benchmarking participants			Benchmarking participants		
Alberta, Canada	\checkmark	\checkmark	Colorado, US		\checkmark
Ontario, Canada	\checkmark	\checkmark	Connecticut, US		\checkmark
Quebec, Canada	\checkmark	\checkmark	Florida, US	\checkmark	\checkmark
Abu Dhabi, UAE	\checkmark	\checkmark	Indiana, US		\checkmark
Dubai, UAE	\checkmark	\checkmark	Massachusetts, US		\checkmark
Alabama, US		\checkmark	Minnesota, US		\checkmark
California, US		\checkmark	North Carolina, US	\checkmark	\checkmark

Source: Exhibit A.1, international mathematics and science reports

A. 3 TIMSS 2011 in the UK

The countries which comprise the United Kingdom are regarded separately by the IEA, and, of the four, England and Northern Ireland chose to participate in the 2011 survey. England has participated in all TIMSS cycles, so comparisons can be made with all earlier cycles where appropriate. The 2011 cycle represented Northern Ireland's first TIMSS participation. Scotland has also participated in previous cycles.

In all three participating UK nations, the TIMSS surveys were administered by NFER. Outcomes from previous cycles of TIMSS internationally and in the UK are available through the NFER website: www.nfer.ac.uk/timss

A. 4 TIMSS 2011 sampling strategy

TIMSS samples are drawn based on internationally specified criteria, and are designed to be representative of the national population of pupils in the target age group (or regional population, for benchmarking participants). Each participant is therefore expected to provide a sampling pool that covers all or almost all of the target national population. Where exclusions are considered necessary, these must be within set limits. Exclusions may be for a variety of reasons, including:

- geographical (e.g. remote and/or very small schools may be excluded at sampling stage);
- linguistic (e.g. participants may exclude some language groups at sampling stage, if they opt to translate the assessment into majority languages only, not all languages spoken within the country/region); or
- special educational needs (e.g. special schools teaching pupils who cannot access the assessment may be excluded at sampling stage, or individual pupils who cannot access the assessment may be excluded at the administration stage).

TIMSS guidance stipulates that no more than five per cent of the population in total should be excluded across all stages of the survey. See the technical report (Martin and Mullis (Eds.), 2011) and Appendix C of the international reports for more information.

In TIMSS, each participating country has a 'main sample' and two matched 'replacement samples' which are used if the main sample schools decline to participate. The main sample is designed to be nationally representative of pupils in the target age group and so the sampling criteria ('stratifiers') for each country are designed to address key characteristics of the nation's school system. ${ }^{147}$ Each main sample school is then assigned a 'first replacement' school and a 'second replacement' school, both of which share the same key sampling characteristics as the main sample school. This ensures that, if the main sample school declines to participate, its first replacement school can be used instead and the sample will still be nationally representative. If the first replacement school also declines to participate, the second replacement school will be invited to participate and, again, the sample will remain nationally representative. If the second replacement school declines to participate, then the country cannot include any other school, to avoid skewing the sample. of size.

Classes of pupils of the target age are then randomly sampled within the participating schools and 95 per cent of these classes are expected to take part. Within each sampled class, at least 85 per cent of pupils are expected to take part. Samples are inspected and, if they meet the sampling criteria, accepted by the IEA's sampling referee.

In order to meet the stringent TIMSS participation targets, countries are expected to achieve participation of:

- At least 85 per cent of their main sample schools; OR
- At least 85 per cent of sampled schools of which at least 50 per cent must be from the main sample and the remainder matched replacement schools; OR
- A combined pupil/school rate of at least 75 per cent.

Participants achieving at least 85 per cent of the main sample schools or a combined pupil/school figure of at least 75 per cent are deemed to have met the sampling requirements fully. Those achieving at least 85 per cent with the use of replacement schools are deemed to have achieved a sample that is suitably representative at national level, but are 'annotated' in the report, to indicate that replacement schools were used.

A. 5 England's TIMSS 2011 samples

England's sampling strategy

Samples for England were drawn by Statistics Canada, assisted by the NFER Research and Statistics teams. The sample was stratified by attainment band and school type (comprehensive school 11-16, comprehensive school 11-18, independent school, or other). Schools were recruited by the NFER Research Operations team. Once a school had agreed to participate, one or more classes from the target year group were randomly sampled, using the IEA's within-school sampling software. This selected the number of classes automatically. In primary schools, Y5 classes were sampled and in secondary schools, Y9 mathematics classes were used as the sampling unit. ${ }^{148}$

England's Y5 sample

The Y5 sample in England met the stringent sampling standards described above. Of 150 schools sampled, a total of 125 primary schools took part (122 main sample schools and just three replacement schools). Class participation was 100 per cent and pupil participation 94 per cent (see Table A.2). Overall participation was 78 per cent, exceeding the combined target of at least 75 per cent of pupils and schools. Total exclusions for England at Y5 were just 2 per cent.

Internationally, participation rates at this grade ranged from 70 per cent in Norway to 100 per cent in Azerbaijan. Overall exclusion rates ranged from 0.3 per cent in Kuwait to 12.1 per cent in Florida (a benchmarking participant). The highest exclusion rate among countries at Y5 was 9.4 per cent in Serbia.

[^1]The average age of participating Y5 pupils in England was 10.2. The range internationally for those in the target grade was from 9.7 (in Italy, Kuwait and Norway) to 11.2 in Yemen.

Table A. 2 Y5 sample information for England
The information in this table is taken from the international mathematics and science reports. The source of each element within the reports is indicated.

Country	Number of Schools in Original Sample	Number of Eligible Schools in Original Sample	Number of Schools in Original Sample that Participated	Number of Replacement Schools that Participated	Total Number of Schools that Participated
England	150	150	122	3	125

Source: Exhibit C.4, international mathematics and science reports

Within-school	Number of Student Sampled Participation (Weighted Percentage)	Number of Students in Participating Schools	Students Withdrawn from Class/School	Number of Students Excluded	Number of Eligible Students	Number of Students Absent	Number of Students Assessed
England	94%	3,689	49	13	3,627	230	3,397

Source: Exhibit C.6, international mathematics and science reports

Country	School Participation		Class Participation	Student Participation	Overall Participation	
	Before Replacement	After Replacement			Before Replacement	After Replacement
England	81\%	83\%	100\%	94\%	76\%	78\%

Source: Exhibit C.8, international mathematics and science reports

Country	International Target Population		Exclusions from National Target Population		
	Coverage	Notes on Coverage	School-level Exclusions	Withinsample Exclusions	Overall Exclusions
England	100\%	n/a	1.7\%	0.4\%	2.0\%

[^2]
England's Y9 sample

Of 150 schools sampled, a total of 118 secondary schools took part (113 main sample schools and just five replacement schools). Class participation was 100 per cent and pupil participation 89 per cent (see Table A.3). Overall participation was 70 per cent, just below the combined target of at least 75 per cent. Total exclusions for England at Y9 were just 2.2 per cent.

England's Y9 sample is annotated in the international report to indicate that the sample "nearly satisfied guidelines for sample participation rates after replacement schools were included". Further initial analysis of the achieved sample (comparing the 118 participating Y9 schools and the Y9 main sample schools that declined to take part) confirmed that there were no significant differences between the responding and non-responding schools, based on England's stratifying variables of attainment and school type. The Y9 achieved sample can, therefore, be regarded as nationally representative in terms of the stratifying variables.

England's overall participation rate at Y9 was the lowest internationally, followed by Hong Kong at 75 per cent. The highest was 99 per cent in Chinese Taipei, Iran, Korea, Qatar, Romania and Thailand. Overall exclusion rates ranged from 0.1 per cent in Malaysia and Morocco to 22.6 per cent in Israel. The next highest exclusion rate among countries was 7.2 per cent in the United States.
The average age of participating Y9 pupils in England was 14.2. The range internationally was from 13.7 in Norway to 15.8 in Ghana.

Table A. 3 Y9 sample information for England

Country	Number of Schools in Original Sample	Number of Eligible Schools in Original Sample	Number of Schools in Original Sample that Participated	Number of Replacement Schools that	Total Number of Schools that Participated
Englarticipated					

Source: Exhibit C.5, international mathematics and science reports

Country	Within-school Student Participation (Weighted Percentage)	Number of Sampled Students in Participating Schools	Number of Students Withdrawn from Class/School	Number of Students Excluded	Number of Eligible Students	Number of Students Absent	Number of Students Assessed
England	89\%	4,382	88	3	4,291	449	3,842

Source: Exhibit C.7, international mathematics and science reports

Country	School Participation		Class Participation	Student Participation	Overall Participation	
	Before Replacement	After Replacement			Before Replacement	After Replacement
${ }^{\ddagger}$ England	75\%	79\%	100\%	89\%	67\%	70\%

Source: Exhibit C.9, international mathematics and science reports

	International Target Population		Exclusions from National Target Population		
	Coverage	Notes on Coverage	School-level Exclusions	Within-sample Exclusions	Overall Exclusions
England	100%	n / a	2.2%	0.1%	2.2%

Source: Exhibit C.3, international mathematics and science reports

Appendix B

 Trend performance of

 Trend performance of England and selected England and selected countries

 countries}

This appendix summarises the trend performance of the TIMSS participants performing similarly to England in 2011 and those which performed better than England in TIMSS 2011. A description of the trend is given in each case (where a participant has taken part in more than one cycle), with a graphic showing the trend. Rankings are given for TIMSS 2007 and 2011, where applicable. England is given in each table for comparison. Benchmarking participants are shown in square brackets. ${ }^{149}$

Table B1 Trends among participants performing similarly to England in Y5 mathematics

Source: Exhibits 1.5 and 1.7, international mathematics report, TIMSS 2011; and Exhibit 1.1, international mathematics report, TIMSS 2007

Table B2 Trends among participants performing better than England in Y5 mathematics

Source: Exhibits 1.5 and 1.7, international mathematics report, TIMSS 2011; and Exhibit 1.1, international mathematics report, TIMSS 2007.

Table B3 Trends among participants performing similarly to England in Y9 mathematics

150 In 1999, Finland participated at 7th grade (pupils a year younger than the 8th grade (Y9) pupils tested in TIMSS 2011); in 2011, Finland tested both 7th and 8th graders (Y8 and Y9 equivalents). The trend data given here is, therefore, for 7th graders only. Ranking data is for 8th graders (Y9 equivalent).

Table B3 Trends among participants performing similarly to England in Y9 mathematics (continued)

Source: Exhibits 1.6 and 1.8, international mathematics report, TIMSS 2011; and Exhibit 1.1, international mathematics report, TIMSS 2007.

Table B4 Trends among participants performing better than England in Y9 mathematics

Participant	TIMSS cycles at this age	Trend (description)	Trend (diagram)				
			1995	1999	2003	2007	2011
England	$\begin{aligned} & 2011, \\ & 2007, \\ & 2003, \\ & 1999, \\ & 1995 \end{aligned}$	Stable 1995-2003; increased 2003-2007; stable 2007- 2011		496	498	513	507
			Rank	2007: 7th		2011: 10th	
Korea	$\begin{aligned} & 2011, \\ & 2007, \\ & 2003, \\ & 1999, \\ & 1995 \end{aligned}$	Significant increase every cycle except 2003		587	589	597	613
			Rank	2007: 2nd		2011: 1st	
Singapore	$\begin{aligned} & 2011, \\ & 2007, \\ & 2003, \\ & 1999, \\ & 1999 \end{aligned}$	Declined in 2007 but a significant increase in 2011		604	605	593	611
			Rank	2007: 3rd		2011: 2nd	
Chinese Taipei	$\begin{aligned} & 2011, \\ & 2007, \\ & 2003, \\ & 1999 \end{aligned}$	Stable 19992003, with significant increases in each subsequent cycle		2007: 1st	585	598	609
Hong Kong	$\begin{aligned} & 2011, \\ & 2007, \\ & 2003, \\ & 1999, \\ & 1995 \end{aligned}$	A very mixed picture. Broadly, stable 1995- 1999 and 1999-2003; declined 2003-2007; stable 2007- 2011; but 2003 and 2011 scores significantly higher than 1995 score. ${ }^{151}$	569		586	2011: 4th	586

[^3]Table B4 Trends among participants performing better than England in Y9 mathematics (continued)

Source: Exhibits 1.6 and 1.8, international mathematics report, TIMSS 2011; and Exhibit 1.1, international mathematics report, TIMSS 2007

Table B5 Trends among participants performing similarly to England in Y5 science

Table B5 Trends among participants performing similarly to England in Y5 science (continued)

Source: Exhibits 1.5 and 1.7, international science report, TIMSS 2011; and Exhibit 1.1, international science report, TIMSS 2007

Table B6 Trends among participants performing better than England in Y5 science

Table B6 Trends among participants performing better than England in Y5 science (continued)

Source: Exhibits 1.5 and 1.7, international science report, TIMSS 2011; and Exhibit 1.1, international science report, TIMSS 2007

Table B7 Trends among participants performing similarly to England in Y9 science

Table B7 Trends among participants performing similarly to England in Y9 science (continued)

Participant	TIMSS cycles at this age	Trend (description)	Trend (diagram)				
			1995	1999	2003	2007	2011
[Indiana, US]	$\begin{aligned} & 2011, \\ & 2003, \\ & 1999 \end{aligned}$	No significant differences		534	531		
[Connecticut, US]	$\begin{aligned} & \text { 2011, } \\ & 1999 \end{aligned}$	No significant differences		529			532
[North Carolina, US]	$\begin{aligned} & 2011, \\ & 1999 \end{aligned}$	Increased 1999-2011		508			532
[Florida, US]	2011	n/a	n/a				
United States	$\begin{aligned} & 2011, \\ & 2007, \\ & 2003, \\ & 1999, \\ & 1995 \end{aligned}$	Increased 1999-2003; 2011 score higher than 1995 score; no other significant differences				$\begin{array}{\|c} 520 \\ \hline \text { 2011: 10th } \\ \hline \end{array}$	525
Hungary	$\begin{aligned} & 2011, \\ & 2007, \\ & 2003, \\ & 1999, \\ & 1995 \end{aligned}$	Increased 1995-1999; decreased 1999-2003; stable 2003 -2007; decreased 2007-2011		$\underbrace{552}$	543	$\underbrace{539}$	522

[^4]Table B8 Trends among participants performing better than England in Y9 science

Table B8 Trends among participants performing better than England in Y9 science (continued)

Participant	TIMSS cycles at this age	Trend (description)	Trend (diagram)				
			1995	1999	2003	2007	2011
Japan	$\begin{aligned} & 2011, \\ & 2007, \\ & 2003, \\ & 1999, \\ & 1995 \end{aligned}$	2011 score significantly higher than 1999 score; no other significant differences	554 Rank	2007: 3rd	552	2011: 4th	558
[Minnesota, US]	$\begin{aligned} & 2011, \\ & 2007, \\ & 1995 \end{aligned}$	$\begin{aligned} & \text { Increased } \\ & \text { 2007-2011 } \end{aligned}$	544			539	553
Finland ${ }^{152}$	$\begin{aligned} & 2011, \\ & 1999 \end{aligned}$	No significant difference (7th grade)	535				529
			Rank (8th grade)	2007: n / a		2011: 5th	
[Alberta, Canada]	$\begin{aligned} & 2011, \\ & 1999, \\ & 1995 \end{aligned}$	No significant differences	550	559			546

Source: Exhibits 1.6 and 1.8, international science report, TIMSS 2011; and Exhibit 1.1, international science report, TIMSS 2007

152 In 1999, Finland participated at 7th grade (pupils a year younger than the Y9 pupils tested in TIMSS 2011); in 2011, Finland tested both 7th and 8th graders (Y8 and Y9 equivalents). The trend data given here is, therefore, for 7th graders only. Ranking data is for 8 th graders (Y 9 equivalent).

Appendix C

 Example mathematics and science items
Interpreting the data: example items

The items exemplify attainment at each of the benchmark levels. The figures accompanying each item show: the percentage answering each item correctly for England; the international average; and the highest percentage answering the item correctly. The items are the 'source version', provided for translation and/or adaptation in each country as required. Any translations and adaptations must be approved by the International Study Centre in order to verify that the changes made do not affect the demand or intent of the question.

Each item is classified by its content domain and by its cognitive domain. For mathematics, these are:

- \quad Y5 - Number, Geometric Shapes and Measures, Data Display; Knowing, Applying and Reasoning
- Y9 - Number, Algebra, Geometry, Data and Chance; Knowing, Applying and Reasoning.

These areas map reasonably well onto the mathematics national curriculum in England.

For science, the content and cognitive domains are:

- Y5 - Life Science, Physical Science, Earth Science; Knowing, Applying and Reasoning
- Y9 - Biology, Chemistry, Physics, Earth Science; Knowing, Applying and Reasoning.

These areas map reasonably well onto the science national curriculum in England. For Y5, subject content related to Materials and their Properties is included within the TIMSS Physical Science category. Some elements of the TIMSS Earth Science category are covered by the Geography curriculum in England.

C. 1 Y5 mathematics

Example item A Low attainment benchmark, Y5 mathematics

Content Domain: Number
Cognitive Domain: Applying
Description: Solves a word problem involving addition of three-digit whole numbers

There are 218 passengers and 191 crew members on a ship. How many people are on the ship altogether?

Answer: \qquad

The answer shown illustrates the type of student response that was given 1 of 1 points.

England's score (and standard error)	$78(2.3)$ - above average
International average	$73(0.3)$
Highest score	$93(0.8)$ - Singapore

Source: Exhibit 2.5, international mathematics report

Example item B

Content Domain: Geometric Shapes and Measure

Cognitive Domain: Applying
Description: Determines the number of cubes in a stack with some hidden

England's score (and standard error)	$67(2.5)$ - average
International average	$63(0.3)$
Highest score	$95(0.8)$ - Chinese Taipei

[^5]
Example item C High attainment benchmark, Y5 mathematics

Content Domain: Data Display

Cognitive Domain: Reasoning
Description: Solves a multi-step reasoning problem using data from a bar graph

The graph shows the number of students at each grade in the Pine School.
Pine School

In the Pine School there is room in each grade for 30 students.
How many more students could be in the school?
(A) 20
(B) 25
(C) 30

- 35

England's score (and standard error)	$65(2.5)$ - above average
International average	$54(0.3)$
Highest score	$79(1.9)$ - Chinese Taipei

[^6]Content Domain: Number
Cognitive Domain: Reasoning
Description: Solves a multi-step numerical reasoning problem

In a soccer tournament, teams get:
3 points for a win
1 point for a tie
0 points for a loss
Zedland has 11 points.
What is the smallest number of games Zedland could have played?

Answer: 5

The answer shown illustrates the type of student response that was given 1 of 1 points.

England's score (and standard error)	$47(2.3)$ - above average
International average	$27(0.3)$
Highest score	$59(2.2)$ - Hong Kong

[^7]
C. 2 Y9 mathematics

Example item E Low attainment benchmark, Y9 mathematics

Content Domain: Algebra

Cognitive Domain: Knowing
Description: Evaluates a simple algebraic expression

$$
\begin{aligned}
& y=\frac{a+b}{c} \\
& a=8, b=6, \text { and } c=2
\end{aligned}
$$

What is the value of y ?

- 7
(B) 10
(C) 11
(D) 14

England's score (and standard error)	$73(2.9)$ - average
International average	$71(0.3)$
Highest score	$94(1.3)$ - Massachusetts

[^8]
Example item F

Content Domain: Geometry
Cognitive Domain: Knowing
Description: Given a net of a three-dimensional object, completes a two-dimensional
drawing of it from a specific viewpoint

The shape shown above is cut out of cardboard. The triangle flaps are then folded up along the dotted lines until they touch the edges of the flaps next to them.

Complete the diagram below to show what the shape would look like when viewed from directly above.

The answer shown illustrates the type of student response that was given 1 of 1 points.

England's score (and standard error)	$82(2.1)$ - above average
International average	$58(0.3)$
Highest score	$90(1.7)$ - Massachusetts

[^9]
Content Domain: Number
 Cognitive Domain: Knowing
 Description: Given the part and the whole can express the part as a percentage and given the whole and the percentage can find the part

Peter, James, and Andrew each had 20 tries at throwing balls into a basket.
Complete the missing boxes below.

Name | Number of |
| :---: |
| Successful Shots |

Peter
Successful Shots
James

Andrew
16 out of 20

The answer shown illustrates the type of student response that was given 2 of 2 points.

England's score (and standard error)	$48(3.0)$ - above average
International average	$37(0.3)$
Highest score	$89(1.2)$ - Singapore

[^10]
Example item H Advanced attainment benchmark, Y9 mathematics

Content Domain: Number

Cognitive Domain: Reasoning
Description: Given two points on a number line representing unspecified fractions,
identifies the point that represents their product

England's score (and standard error)	$29(3.0)$ - above average
International average	$23(0.3)$
Highest score	$53(2.0)$ - Chinese Taipei

[^11]
C. 3 Y5 science

Example item I Low attainment benchmark, Y5 science

Content Domain: Physical Science

Cognitive Domain: Applying
Description: From a simple circuit diagram, recognizes that an iron nail can complete an electrical circuit

The following picture shows a lightbulb connected to a battery in an electrical circuit. Which of the following objects connected to Points 1 and 2 will allow the bulb to glow?

- iron nail
(B) plastic spoon
(C) rubber band
(D) wooden stick

England's score (and standard error)	$84(1.7)$ - above average
International average	$71(0.3)$
Highest score	$94(1.1)-$ Japan

Source: Exhibit 2.6, international science report

Content Domain: Life Science

Cognitive Domain: Applying
Description: Pairs pictures of three animals with their distinguishing biological characteristics (skeleton, milk production, number of legs)

Monkey

Grasshopper

Octopus

Answer the following questions using the animals shown above. Write the name for the correct animal in the spaces below.

Which animal has an internal skeleton and produces milk for its young?
monkey
Which animal has an external skeleton and three pairs of legs?

```
grasshopper
```

Which animal has a soft body and no skeleton?
\qquad octopus

The answer shown illustrates the type of student response that was given 1 of 1 points.

England's score (and standard error)	$67(2.4)$ - above average
International average	$58(0.3)$
Highest score	$88(1.4)-$ Korea

[^12]
Example item K High attainment benchmark, Y5 science

Content Domain: Earth Science

Cognitive Domain: Reasoning
Description: Identifies the Earth, Moon, and Sun from a diagram of their orbits

The figure below shows Earth, the Moon, and the Sun. Each body is labeled by a number. The arrows show the direction each body is moving.

Fill in the correct number next to each body (1,2 or 3).

Earth is body number: \qquad 2

The Moon is body number: \qquad 3

The Sun is body number: \qquad 1

The answer shown illustrates the type of student response that was given 1 of 1 points.

England's score (and standard error)	$63(2.5)$ - above average
International average	$49(0.3)$
Highest score	$78(2.2)$ - Portugal

[^13]Content Domain: Life Science
Cognitive Domain: Knowing
Description: From a diagram of a flowering plant, identifies numbered parts and states a function of most of these parts

The diagram shows a flowering plant. Four of its parts are numbered.

In the table below, write the name of each part, and state its function.

Part Number	Name of Part	Function of Part
1	flower	produces seeds
2	stem	transports water and food.
3	leaf	makes food for the plant
4	root	absorbs water, minerals, and nutrients into the plant

The answer shown illustrates the type of student response that was given 2 of 2 points.

England's score (and standard error)	$21(2.8)$ - average
International average	$21(0.3)$
Highest score	$80(1.6)$ - Singapore

[^14]
C. 4 Y9 science

Example item M Low attainment benchmark, Y9 science

Content Domain: Chemistry

Cognitive Domain: Knowing
Description: Recognizes the chemical formula of carbon dioxide

Source: Exhibit 2.22, international science report

Example item N Intermediate attainment benchmark, Y9 science

Content Domain: Biology
Cognitive Domain: Reasoning
Description: Interprets a graph showing changes in pulse rates before, during, and after
exercise and recognizes what can be concluded from the graph

John measures his pulse rate before he exercises. It is 70 beats per minute. He exercises for one minute and measures his pulse rate again. He then measures it every minute for several minutes. He draws a graph to show his results

What can be concluded from his results?
(A) His pulse rate increased by 50 beats per minute.
(B) His pulse rate took less time to slow down than to increase.
(C) His pulse rate after 4 minutes was 80 beats per minute.

- His pulse rate returned to normal in less than 6 minutes.

England's score (and standard error)	$69(2.6)$ - above average
International average	$57(0.3)$
Highest score	$82(1.7)$ - Japan

Source: Exhibit 2.24, international science report

Content Domain: Physics

Cognitive Domain: Knowing
Description: Recognizes what happens to molecules of a liquid as the liquid cools

What happens to the molecules of a liquid when the liquid cools?
(B) They speed up.
(C) They decrease in number.
They decrease in size.

England's score (and standard error)	$65(2.3)$ - above average
International average	$58(0.3)$
Highest score	$86(1.6)$ - Alberta

[^15]
Example item $\mathbf{P} \quad$ Advanced attainment benchmark, Y9 science

Content Domain: Physics

Cognitive Domain: Applying
Description: Recognizes that the force of gravity acts on a person regardless of position and movement

The figure shows a parachute jumper in four positions.

1. In the aircraft before the jump
2. In freefall immediately after jumping before parachute opens

3. Falling to the ground after the parachute opens

In which of the positions does the force of gravity act on the jumper?
(A) Position 2 only.
(B) Positions 2 and 3 only.
(C) Positions 1,2 and 3 only.

Positions 1, 2, 3, and 4 .

England's score (and standard error)	$43(2.9)$ - above average
International average	$32(0.3)$
Highest score	$63(2.0)$ - Korea

[^16]
[^0]: 142 International Association for the Evaluation of Educational Achievement (IEA): http://www.iea.nl
 143 The 1995 TIMSS study was originally entitled the Third International Mathematics and Science Study, and followed earlier mathematics surveys in 1964 and 1980-1982 and science surveys in 1970 and 1984.
 144 Countries participating in TIMSS follow guidelines and strict sampling targets to provide samples that are nationally representative. 'Benchmarking participants' are regional entities which follow the same guidelines and targets to provide samples that are representative at regional level.
 144 Three participants tested only pupils older than the target age. Botswana and Honduras administered the 4th grade assessment to 6th grade pupils (Y7 equivalent); Yemen administered it to both 4th and 6th grade pupils. Botswana, South Africa and Honduras administered the 8th grade assessment to 9th grade pupils (Y10 equivalent). Out-of-grade result are not included in this national report.
 145 See Appendix C. 1 in the international mathematics and science reports for a summary of school starting ages in the participating countries/regions.

[^1]: 148 The class sampling strategy had implications for the number of teachers completing questionnaires. The Y5 teacher questionnaire was generally completed by a class teacher but, where pupils had separate mathematics and science teachers, each teacher completed a questionnaire. At Y9 the mathematics teacher questionnaire was completed by the teacher of the sampled class and all science teachers teaching the sampled pupils completed a science teacher questionnaire. Therefore, each individual TIMSS pupil was linked to multiple teachers at Y9 and a greater number of science than mathematics teachers took part.

[^2]: Source: Exhibit C.2, international mathematics and science reports

[^3]: 151 See Exhibits 1.5 and 1.7 in the international mathematics report for more information.

[^4]: Source: Exhibits 1.6 and 1.8, international science report, TIMSS 2011; and Exhibit 1.1, international science report, TIMSS 2007

[^5]: Source: Exhibit 2.9, international mathematics report

[^6]: Source: Exhibit 2.14, international mathematics report

[^7]: Source: Exhibit 2.16, international mathematics report

[^8]: Source: Exhibit 2.23, international mathematics report

[^9]: Source: Exhibit 2.26, international mathematics report

[^10]: Source: Exhibit 2.28, international mathematics report

[^11]: Source: Exhibit 2.32, international mathematics report

[^12]: Source: Exhibit 2.8, international science report

[^13]: Source: Exhibit 2.12, international science report

[^14]: Source: Exhibit 2.14, international science report

[^15]: Source: Exhibit 2.28, international science report

[^16]: Source: Exhibit 2.32, international science report

