Evidence for Excellence in Education

## Technical appendices

# Research into the impact of Project Maths on student achievement, learning and motivation 



Published in November 2013
by the National Foundation for Educational Research, The Mere, Upton Park, Slough, Berkshire SL1 2DQ www.nfer.ac.uk
© National Foundation for Educational Research 2013
Registered Charity No. 313392

## Contents

Appendix A: Technical notes on statistical analysis ..... 3
Appendix B: Analysis of students' work ..... 21
Appendix C: Data tables for the student attitude survey ..... 27
Appendix D: Students' performance in relation to individual strands of the revised mathematics curriculum ..... 56

## Appendix A: Technical notes on statistical analysis

Appendix A describes the considerations and outcomes of the factor analysis and multilevel modelling undertaken as part of this research.

## Factor analysis

Factor analysis is a statistical technique used to identify underlying factors in a large number of possibly correlated variables. In this case Principal Axis Factoring is employed, in which the first factor to be extracted is the linear combination of variables which explains the greatest amount of the variation in the data. Varimax rotation is used, which involves rotating the solution until the variance in the factor loadings is a maximum. This implies that loadings will either be large or close to zero and each factor will only be highly loaded on a subset of variables. This rotation scheme keeps the factors orthogonal (uncorrelated with each other). Before the analysis was carried out the data was re-coded so that high values represent a positive response.

The aim is to identify attitudinal outcomes of interest from the class of 2012 Junior Certificate and Leaving Certificate attitude surveys, especially confidence in mathematics. Four types of questions were put into the factor analysis for both surveys:

- different ways of working in mathematics lessons
- questions about what the teacher does
- feelings about mathematics
- how easy they would find different types of mathematics problems.

Factor loadings are the correlations between the factor and the original variables. Usually a value of 0.3 is used to identify important items, here any items loading 0.25 or more were considered. This was to ensure that all variables which may be useful were considered. The strongest factor for the Junior Certificate attitude survey has high loadings on the items relating to students' feelings about mathematics (e.g. 'I usually do well in maths') and some of the items about the teacher (Q6, e.g. 'my teacher thinks I can do well in maths'). The second factor is related to the questions about how easy they would find different types of mathematics problems (Q8, e.g. to solve problems using the properties of different shapes). For Leaving Certificate the items loading heavily on the first two factors are similar to the Junior Certificate survey but the factors
were reversed. The strongest factor involves questions about how easy they would find different types of mathematics problems (Q9) and the second factor includes items relating to the students feelings about mathematics (Q8) and some items about the teacher (Q7).

Factor leadings for Junior and Leaving Certificate students are set out in Table 1 and Table 2. Significant results are highlighted.

Table 1: Junior Certificate attitude survey rotated factor loadings

| Variables included in the 'Confidence in mathematics' measure | Factor |  |
| :---: | :---: | :---: |
|  | 1 | 2 |
| Q7H I like maths | . 787 | . 237 |
| Q7D I enjoy learning maths | . 755 | . 232 |
| Q7G Maths is boring | . 672 | . 163 |
| Q7F I learn things quickly in maths | . 611 | . 402 |
| Q7A I usually do well in maths | . 573 | . 367 |
| Q7E Maths is not one of my strengths | . 571 | . 323 |
| Q7B I would like to take more maths in school | . 459 | . 188 |
| Q7C Maths is more difficult for me than many of my classmates | . 451 | . 326 |
| Q8H Use formulae to solve problems in measurement | . 242 | . 578 |
| Q8K Solve maths problems using what I have learned in more than one maths topic |  | . 573 |
| Q8D Solve problems using the properties of different shapes | . 234 | . 557 |
| Q8L Gather all the information available, and then use it to solve a particular maths problem | . 217 | . 544 |
| Q8E Solve problems using trigonometry | . 260 | . 533 |
| Q8B Draw charts like these to display my data |  | . 500 |
| Q8J Represent this relationship in a graph |  | . 492 |
| Q8F Use maths to solve problems based on real-life situations |  | . 460 |
| Q81 Solve problems using algebra | . 363 | . 451 |
| Q8C Make different shapes |  | . 450 |
| Q8G Understand indices | . 196 | . 420 |
| Q8A Work out the probability of something happening. | . 164 | . 396 |
| Q6G My teacher explains maths in ways that make it interesting | . 339 |  |
| Q6H My teacher is easy to understand | . 261 |  |
| Q6E My teacher thinks I can do well in maths | . 311 |  |

Table 2: Leaving Certificate attitude survey rotated factor loadings

| Variables included in the 'Confidence in Mathematics' <br> measure | Factor |  |
| :--- | :--- | :--- |
|  | Q9E Solve problems using the properties of different shapes | .626 |
| Q9I Use formulae to solve problems in measurement | .571 | .204 |
| Q9L Solve maths problems using what I have learned in more <br> than one maths topic | .567 |  |
| Q9F Solve problems using trigonometry | .567 | .266 |
| Q9M Gather all the information available, and then use it to <br> solve a particular maths problem | .541 | .218 |
| Q9B Find, collect and organise data | .487 |  |
| Q9K Represent this relationship in a graph | .469 |  |
| Q9D Make different shapes | .466 |  |
| Q9C Draw charts like these to display your data | .466 |  |
| Q9J Solve problems using algebra | .454 | .324 |
| Q9G Use maths to solve problems based on real-life <br> situations | .449 |  |
| Q9H Understand indices | .442 | .241 |
| Q9A Work out the probability of something happening | .389 |  |
| Q8H I like maths | .231 | .784 |
| Q8D I enjoy learning maths | .236 | .766 |
| Q8G Maths is boring |  | .672 |
| Q8F I learn things quickly in maths | .439 | .606 |
| Q8A I usually do well in maths | .389 | .567 |
| Q8E Maths is not one of my strengths | .278 | .555 |
| Q8B I would like to take more maths in school | .458 |  |
| Q8C Maths is more difficult for me than many of my <br> lassmates | .321 | .421 |
| Q7G My teacher explains maths in ways that make it <br> interesting |  | .296 |
| Q7E My teacher thinks I can do well in maths | .291 |  |

For both the Junior Certificate and Leaving Certificate class of 2012 survey data the first two factors are combined to produce a measure of overall confidence in mathematics. In each case the reliability of the measures was checked using Chronbach's Alpha. This statistic estimates how well the individual statements collectively measure the same underlying construct. It uses the correlations between the individual statements to estimate their consistency, how well they measure the same thing and an estimate of how likely one is to get the same result if the survey questions were repeated. Items are removed if they do not improve the robustness of the scale and the reliability analysis
repeated until all items are useful. The final value of Alpha is over 0.7 in for both Junior and Leaving Certificate surveys, the generally accepted value for a robust scale. The scales were then applied to the Autumn 2012 data and the reliability analysis repeated. The results are given in the table below, again Chronbach's Alpha well over 0.7.

Table 3: Chronbach's Alpha - 'Confidence in mathematics'

|  | Junior Certificate | Leaving Certificate |
| :--- | :--- | :--- |
| Class of 2012 | 0.903 | 0.894 |
| Class of 2013 | 0.895 | 0.899 |
| Number of items | 23 | 23 |

The outcome measure confidence in mathematics is calculated by summing the 23 recoded item values for each individual. Missing values are replaced by the mean item value. It is then used in multi-level models to evaluate the impact of the revised mathematics syllabuses on attitudes towards mathematics, controlling for various background characteristics of the students.

## Multi-level modelling

Multi-level modelling is a development of a common statistical technique known as 'regression analysis'. This is a technique for finding relationships between variables given the values of one or more related measures. Multi-level modelling takes account of data which is grouped into similar clusters at different levels. For example in the present study, individual students are grouped into schools. Students within a school will be more alike, on average, than students from different schools. The schools were also surveyed at two different time points, Spring and Autumn 2012; each on a different sample of students. Multi-level modelling allows us to take account of this hierarchical structure of the data and produce more reliable results. Models were fitted with three levels, school, date of survey and student and two types of outcome variable, attitudes as measured by 'Confidence in mathematics' and attainment scores.

The influence of number of strands of the revised mathematics syllabuses that the students have been exposed to is of primary interest to the study but, unfortunately, due to the structure of the evaluation this is confounded with other important variables: phase of the study, date of the survey and time of involvement in the revised mathematics syllabuses (months of study). The characteristics of the sample of students surveyed at the two time points are illustrated in Tables 4 and 5 . Number of months of study is based on an approximation of 10 months' study per year.

Table 4: Characteristics of Junior Certificate students

|  | Non-phase one schools | Phase one schools |
| :--- | :--- | :--- |
| Class of 2012 (Spring <br> 2012 ) | No strands | Strands $1-4$ <br> $(27$ out of 30 months) |
| Class of 2013 (Autumn <br> 2012 ) | Strands $1-2$ <br> (21 of 30 months) | Strands $1-5$ <br> (21 out of 30 months) |

Table 5: Characteristics of Leaving Certificate students

|  | Non-phase one schools | Phase one schools |
| :--- | :--- | :--- |
| Class of 2012 (Spring <br> 2012 ) | Strands $1-2$ <br> (17 out of 20 months) | Strands $1-5$ <br> (17 out of 20 months) |
| Class of 2013 (Autumn <br> 2012 ) | Strands $1-4$ <br> (11 out of 20 months) | Strands $1-5$ <br> (11 out of 20 months) |

It is possible that the phase of involvement of the school could influence outcomes as phase one schools have been following the revised mathematics syllabuses for two years longer than the non-phase one schools and teachers will therefore have more experience of delivering it. Date of the survey could also be important as students surveyed in Spring 2012 had had six months more teaching of the revised mathematics syllabuses than those surveyed in Autumn 2012. These two variables, phase and date of survey were included in the models along with various background characteristics of the schools and students.

## Attitude models

Multi-level models were fitted to the data to investigate the variation in student's confidence in their mathematical ability with phase of involvement in the revised mathematics syllabuses, the date of the survey and various background characteristics for the Junior and Leaving Certificate surveys. The results are given in Tables 6-11.

Table 6: Variables included in the Junior Certificate model

|  | Number of students | Minimum | Maximum | Mean | Standard deviation |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Confidence in mathematics | 5415 | 0 | 3 | 1.92 | . 500 |
| Phase one <br> (Non-phase one is base case) | 5415 | 0 | 1 | . 146 | . 353 |
| Autumn 2012 survey <br> (Spring 2012 is base case) | 5415 | 0 | 1 | . 49 | . 500 |
| Girls <br> (Boys are base case) | 5415 | 0 | 1 | . 48 | . 500 |
| Foundation Level <br> (Higher Level is base case) | 5415 | 0 | 1 | . 02 | . 125 |
| Ordinary Level <br> (Higher Level is base case) | 5415 | 0 | 1 | . 30 | . 460 |
| Vocational school <br> (Secondary school is base case) | 5415 | 0 | 1 | . 26 | . 439 |
| Community \& comprehensive school <br> (Secondary school is base case) | 5415 | 0 | 1 | . 15 | . 359 |

Table 7: Variables that were significant in the Junior Certificate model

|  |  | Fixed effect | Standard error | Degree <br> of freedom | t-value | p-value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Intercept <br> (The predicted confidence score for the average base case) | 2.085 | . 015 | 5142 | 137.557 | . 000 |
|  | Girls <br> (Boys are base case) | -. 148 | . 015 | 5142 | -9.938 | . 000 |
|  | Foundation Level <br> (Higher Level is base case) | -. 569 | . 055 | 5142 | -10.429 | . 000 |
|  | Ordinary Level <br> (Higher Level is base case) | -. 272 | . 019 | 5142 | -14.181 | . 000 |

Table 8: The structure of the Junior Certificate model

|  |  | Variance | Standard <br> deviation |
| :---: | :--- | :--- | :--- |
| $\underset{\substack{ \\ \multirow{2}{*}{\hline \\ \hline}\\ \hline \\ \hline}}{ }$ | School | .004 | .062 |
|  | Timing of survey <br> (Autumn/Spring 2012) | .018 | .134 |
|  | Student | .207 | .455 |

Table 9: Variables included in the Leaving Certificate model

|  | Number of <br> students | Minimum | Maximum | Mean | Standard <br> deviation |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Confidence in mathematics | 4876 | 0 | 3 | 1.86 | .493 |
| Phase one <br> (Non-phase one is base <br> case) | 4876 | .00 | 1.00 | 1460 | .35316 |
| Autumn 2012 survey <br> (Spring 2012 survey is <br> base case) | 4876 | 0 | 1 | .53 | .499 |
| Girls <br> (Boys are base case) | 4876 | 0 | 1 | .49 | .500 |
| Foundation Level <br> (Higher Level is base case) | 4876 | 0 | 1 | .03 | .156 |
| Ordinary Level <br> (Higher Level is base case) | 4876 | 0 | 1 | .65 | .476 |
| Vocational school <br> (Secondary school is base <br> case) | 4876 | 0 | 1 | .27 | .444 |
|  <br> comprehensive school <br> (Secondary school is base <br> case) | 4876 | 0 | 1 | .16 | .365 |

Table 10: Variables that were significant in the Leaving Certificate model

|  |  | Fixed effect | Standard error | Degree of freedom | t-value | $p$-value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Intercept <br> (The predicted confidence score for the average base case) | 2.132 | . 019 | 4600 | 113.531 | . 000 |
|  | Girls <br> (Boys are base case) | -. 135 | . 015 | 4600 | -9.067 | . 000 |
|  | Foundation Level <br> (Higher Level is base case) | -. 684 | . 050 | 4600 | -13.723 | . 000 |
|  | Ordinary Level <br> (Higher Level is base case) | -. 296 | . 020 | 4600 | -15.008 | . 000 |

Table 11: The structure of the Leaving Certificate model

|  |  | Variance | Standard <br> deviation |
| :---: | :--- | :--- | :--- |
| $\underset{\substack{\text { © } \\ \hline \\ \hline}}{ }$ | School | .006 | .076 |
|  | Timing of <br> survey | .012 | .109 |
|  | Student | .194 | .441 |

## Attainment models

Of the booklets administered to students, only items relating to Strand 1(Statistics and Probability) and Strand 2 (Geometry and Trigonometry) were completed by both phase one and non-phase one students. It was therefore only possible to use these booklets for our impact analysis. Since the booklets were not designed to hang together as a test, it is important to explore their reliability before we considered booklet scores as outcome variables. Using an outcome with low reliability would mean much of its variability was not due to the ability of the student and may result in genuine associations being missed. Table 12 shows the reliabilities of each booklet and when combined together:

Table 12: Reliability of assessment booklets

| Booklet combination | Cronbach's alpha |
| :--- | :--- |
| JC Strand 1 only (Statistics and Probability) | 0.754 |
| JC Strand 2 (Geometry and Trigonometry) | 0.707 |
| JC Strand 1 and Strand 2 | 0.827 |
| LC Strand 1 (Statistics and Probability) | 0.717 |
| LC Strand 2 (Geometry and Trigonometry) | 0.694 |
| LC Strand 1 and Strand 2 | 0.806 |

Since these reliabilities were all reasonably high, we used separate booklets to explore assessment outcomes (i.e. four separate models). Multi-level models were fitted to the data to investigate the variation in attainment with phase of involvement in the revised mathematics syllabuses, the date of the survey and various background characteristics. The results are given in the tables below.

Table 13: Variables included in the Junior Certificate Strand 1 model

|  | Number <br> of <br> students | Minimum | Maximum | Mean | Standard deviation |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Score on Junior Certificate Strand 1 | 2100 | 0 | 19 | 10.75 | 4.205 |
| Phase one <br> (Non-phase one is base case) | 2100 | 0 | 1 | . 19 | . 391 |
| Autumn 2012 survey <br> (Spring 2012 survey is base case) | 2100 | 0 | 1 | . 48 | . 500 |
| Girls <br> (Boys are base case) | 2100 | 0 | 1 | . 52 | . 500 |
| Foundation <br> Level (Higher <br> Level is base <br> case) | 2100 | 0 | 1 | . 02 | . 124 |
| Ordinary Level (Higher Level is base case) | 2100 | 0 | 1 | . 33 | . 469 |
| Vocational school <br> (Secondary school is base case) | 2100 | 0 | 1 | . 27 | . 444 |
| Community \& Comprehensive school <br> (Secondary school is base case) | 2100 | 0 | 1 | . 14 | . 344 |

Table 14: Variables that were significant in the Junior Certificate Strand 1 model

|  | Fixed <br> effect | Standard <br> error | Degree <br> of <br> freedom | t-value | p- <br> value |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Intercept <br> (The predicted confidence <br> score for the average base <br> case) | 13.225 | .247 | 1971 | 53.472 | .000 |
| Autumn 2012 <br> (Spring 2012 is base case) | -.973 | .235 | 48 | -4.147 | .000 |
| Girls <br> (Boys are base case) | -.722 | .172 | 1971 | -4.189 | .000 |
| Foundation Level <br> (Higher Level is base case) | -7.080 | .631 | 1971 | - | .000 |
| Ordinary Level <br> (Higher Level is base case) | -4.266 | .227 | 1971 | - | .000 |
| Vocational school <br> (Secondary school is base <br> case) | -.796 | .333 | 75 | -2.388 | .019 |

Table 15: The structure of the Junior Certificate Strand 1 model

|  | Variance | Standard <br> deviation |
| :--- | :--- | :--- |
| School | .751 | .867 |
| Timing of the survey | .938 | .969 |
| Student | 9.764 | 3.125 |

Table 16: Variables included in the Junior Certificate Strand 2 model

|  | Number of <br> students | Minimum | Maximum | Mean | Standard <br> deviation |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Score on Junior <br> Certificate Strand 2 | 2100 | 0 | 10 | 5.62 | 2.526 |
| Phase one <br> (Non-phase one is <br> base case) | 210 | 0 | 1 | .19 | .391 |
| Autumn 2012 <br> (Spring 2012 is <br> base case) | 2100 | 0 | 1 | .48 | .500 |
| Girls <br> (Boys are base <br> case) | 2100 | 0 | 1 | .52 | .500 |
| Foundation Level <br> (Higher Level is <br> base case) | 2100 | 0 | 1 | .02 | .124 |
| Ordinary Level <br> (Higher Level is <br> base case) | 2100 | 0 | 1 | .33 | .469 |
| Vocational school <br> (Secondary school <br> is base case) | 2100 | 0 | 1 | .27 | .444 |
|  <br> Comprehensive <br> school <br> (Secondary school <br> is base case) | 2100 | 0 | 1 | .14 | .344 |

Table 17: Variables that were significant in the Junior Certificate Strand 2 model

|  | Fixed <br> effect | 7.152 | .158 | Standard <br> error | Degree of <br> freedom |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Intercept <br> (The predicted <br> confidence score for <br> the average base <br> case) |  | 1971 | p-value |  |  |
| Autumn 2012 survey <br> (Spring 2012 survey is <br> base case) | -.843 | .167 | 48 | .000 |  |
| Girls <br> (Boys are base case) | -.466 | .106 | 1971 | -4.416 | .000 |
| Foundation Level <br> (Higher Level is base <br> case) | -3.612 | .390 | 1971 | -9.256 | .000 |
| Ordinary Level <br> (Higher Level is base <br> case) | -2.397 | .144 | 1971 | -16.693 | .000 |
| Vocational school <br> (Secondary school is <br> base case) | -.427 | .207 | 75 | -2.057 | .043 |

Table 18: The structure of the Junior Certificate Strand 2 model

|  | Variance | Standard <br> deviation |
| :--- | :--- | :--- |
| School | .156 | .395 |
| Survey time-point (Oct/Arp) | .587 | .766 |
| Student | 3.649 | 1.910 |

Table 19: Variables included in the Leaving Certificate Strand 1 model

|  |  | N |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Score on Leaving <br> Certificate Strand 1 | 1498 | 0 | 13 | 6.67 | 3.080 |
| Phase one <br> (Non-phase one is <br> base case) | 1498 | 0 | 1 | .25 | .436 |
| Autumn 2012 <br> (Spring 2012 is <br> base case) | 1498 | 0 | 1 | .40 | .490 |
| Girls |  |  |  |  |  |
| (Boys are base <br> case) | 1498 | 0 | 1 | .52 | .500 |
| Foundation Level <br> (Higher Level is <br> base case) | 1498 | 0 | 1 | .02 | .155 |
| Ordinary Level <br> (Higher Level is <br> base case) | 1498 | 0 | 1 | .65 | .477 |
| Vocational school <br> (Secondary school <br> is base case) | 1498 | 0 | 1 | .30 | .457 |
| Community $\&$ <br> Comprehensive <br> school (Secondary <br> school is base case) | 1498 | 0 | 1 | .15 | .357 |

Table 20: Variables that were significant in the Leaving Certificate Strand 1 model

|  | Fixed <br> effect | Standard <br> error | Degree <br> of <br> freedom | t-value |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| p- <br> value |  |  |  |  |  |
| (Thercept predicted confidence <br> score for the average base <br> case) | 8.400 | .235 | 1365 | 35.811 | .000 |
| Girls <br> (Boys are base case) | -.439 | .154 | 1365 | -2.851 | .004 |
| Foundation Level <br> (Higher Level is base case) | -5.008 | .594 | 1365 | -8.424 | .000 |
| Ordinary Level <br> (Higher Level is base case) | -2.186 | .226 | 1365 | -9.678 | .000 |

Table 21: The structure of the Leaving Certificate Strand 1 model

|  | Variance | Standard <br> deviation |
| :--- | :--- | :--- |
| School | 1.191 | 1.091 |
| Timing of survey | .552 | .743 |
| Student | 5.718 | 2.391 |

Table 22: Variables included in the Leaving Certificate Strand 2 model

|  | Number <br> of <br> students | Minimum | Maximum | Mean | Standard <br> deviation |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Score on Leaving <br> Certificate Strand 2 | 1495 | 0 | 14 | 4.58 | 3.038 |
| Phase one <br> (Non-phase one is <br> base case) | 1495 | 0 | 1 | .26 | .436 |
| Autumn 2012 <br> (Spring 2012is base <br> case) | 1495 | 0 | 1 | .40 | .490 |
| Girls <br> (Boys are base case) | 1495 | 0 | 1 | .52 | .500 |
| Foundation Level <br> (Higher Level is base <br> case) | 1495 | 0 | 1 | .02 | .153 |
| Ordinary Level <br> (Higher Level is base <br> case) | 1495 | 0 | 1 | .65 | .476 |
| Vocational school | 1495 | 0 | 1 | .29 | .456 |
| (Secondary school is <br> base case) |  | 0 | 1 | .15 | .359 |
|  <br> Comprehensive school <br> (Secondary school is <br> base case) | 1495 | 0 |  |  |  |

Table 23: Variables that were significant in the Leaving Certificate Strand 2 model

|  | Fixed <br> effect | Standard <br> error | Degree of <br> freedom | t-value | p-value |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Intercept <br> (The predicted confidence <br> score for the average <br> base case) | 7.085 | .205 | 1363 | 34.559 | .000 |
| Autumn 2012 <br> (Spring 2012 is base <br> case) | -.778 | .179 | 50 | -4.343 | .000 |
| Foundation Level <br> (Higher Level is base <br> case) | -4.702 | .538 | 1363 | -8.741 | .000 |
| Ordinary Level <br> (Higher Level is base <br> case) | -3.242 | .203 | 1363 | -16.001 | .000 |

Table 24: The structure of the Leaving Certificate Strand 2 model

|  | Variance | Standard <br> Deviation |
| :--- | :--- | :--- |
| School | .669 | .818 |
| Timing of Survey | .440 | .664 |
| Student | 5.058 | 2.249 |

## Appendix B: Analysis of students' work

This appendix sets out further details of the analysis of students' work described in section 4. Tables 1 and 2 include a complete analysis of all 58 samples of students' written work. It is important to note that inference was based solely on the written product of each lesson: where homework was also included in the sample, it was not included in the analysis. This data is presented by both year group and phase.

Some samples included only the work of an individual student whereas others were a number of examples from a lesson. Each student's work was separately coded to address the varied standard sometimes present in the work from a single lesson. In some cases the samples covered a number of lessons on the same topic (labelled ia, ib etc.). Please note that where inferences have not been possible due to the sample of work provided, these have been excluded from the dataset.

Key for interpreting data in Tables 4 and 5:

- $0=$ no evidence of process
- 1 = novice level process
- 2 = practitioner level process
- 3 = expert level process.

Table 1: Processes evident in students' work in phase one schools
Mathematical process
A = Problem solving
B = Mastery of mathematical procedure
C = Reasoning and proof
$\mathrm{D}=$ Communication
E = Connections between topics
F = Representations

| Lesson number | $\begin{aligned} & \text { Year } \\ & \text { group } \end{aligned}$ | Subject level | Strand | Student <br> sample <br> number | A | B | C | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $2^{\text {nd }}$ | HL | 4 | i | 3 | 3 | 2 | 2 | 0 | 2 |
|  |  |  |  | ii | 3 | 3 | 1 | 0 | 0 | 1 |
|  |  |  |  | iii | 2 | 2 | 1 | 0 | 0 | 1 |
| 2 | $2^{\text {nd }}$ | HL | 4 | i | 0 | 2 | 0 | 0 | 0 | 2 |
| 3 | $2^{\text {nd }}$ | HL | 4 | i | 2 | 2 | 0 | 0 | 0 | 1 |
| 4 | $3^{\text {rd }}$ | HL | 1 | i | 3 | 3 | 3 | 3 | 0 | 1 |
| 5 | $3{ }^{\text {rd }}$ | Mixed | 3 | i | 0 | 1 | 1 | 1 | 0 | 0 |
|  |  |  |  | ii | 0 | 2 | 1 | 1 | 0 | 0 |
| 6 | $3^{\text {rad }}$ | OL | 4 | i | 0 | 2 | 1 | 0 | 0 | 0 |
|  |  |  |  | ii | 0 | 2 | 2 | 0 | 0 | 0 |
| 7 | $3{ }^{\text {rad }}$ | Mixed | 4 | i | 2 | 3 | 0 | 0 | 0 | 2 |
|  |  |  |  | ii | 2 | 3 | 0 | 0 | 0 | 2 |
|  |  |  |  | iii | 1 | 2 | 0 | 0 | 0 | 2 |
| 8 | $3{ }^{\text {rd }}$ | OL | 4 | i | 0 | 3 | 0 | 0 | 0 | 2 |
| 9 | $5^{\text {th }}$ | OL | 1 | i | 2 | 3 | 2 | 2 | 2 | 2 |
| 10 | $5^{\text {th }}$ | HL | 3 | ia | 0 | 3 | 0 | 0 | 0 | 0 |
|  |  |  |  | ib | 0 | 3 | 0 | 0 | 0 | 0 |
|  |  |  |  | ic | 0 | 3 | 0 | 0 | 0 | 0 |
| 11 | $5^{\text {In }}$ | OL | 4 | i | 0 | 1 | 0 | 1 | 0 | 0 |
|  |  |  |  | ii | 0 | 1 | 0 | 1 | 0 | 0 |
|  |  |  |  | iii | 0 | 2 | 0 | 1 | 0 | 0 |
| 12 | $6^{\text {ln }}$ | HL | 2 | i | 3 | 3 | 1 | 1 | 0 | 0 |
|  |  |  |  | ii | 2 | 3 | 1 | 1 | 0 | 0 |
|  |  |  |  | iii | 2 | 3 | 1 | 1 | 0 | 0 |
| 13 | 6th | OL | 3 | i | 2 | 2 | 1 | 1 | 0 | 2 |
|  |  |  |  | ii | 2 | 2 | 0 | 0 | 0 | 1 |
|  |  |  |  | iii | 2 | 2 | 1 | 1 | 0 | 2 |
|  |  |  |  | iv | 2 | 2 | 1 | 1 | 0 | 2 |
| 14 | $6^{\text {th }}$ | HL | 4 | i | 2 | 3 | 2 | 2 | 0 | 2 |
|  |  |  |  | ii | 2 | 2 | 2 | 2 | 0 | 1 |
| 15 | $6^{\text {th }}$ | HL | 4 | ia | 0 | 1 | 1 | 2 | 0 | 1 |
|  |  |  |  | ib | 0 | 1 | 0 | 1 | 0 | 2 |


| 16 | 6th | OL | 4 | i | 3 | 3 | 3 | 3 | 3 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | ii | 3 | 3 | 3 | 3 | 3 | 3 |
|  |  |  |  | iii | 3 | 3 | 3 | 3 | 3 | 3 |
|  |  |  |  | iv | 3 | 3 | 3 | 3 | 3 | 3 |
| 17 | 6th | HL | 5 | i | 3 | 3 | 2 | 3 | 2 | 3 |

Table 2: Processes evident in students' work in non-phase one schools

| Mathematical process |
| :--- |
| A $=$ Problem solving |
| $\mathrm{B}=$ Mastery of mathematical procedure |
| $\mathrm{C}=$ Reasoning and proof |
| $\mathrm{D}=$ Communication |
| $\mathrm{E}=$ Connections between topics |
| $\mathrm{F}=$ Representations |


| Lesson number | Year group | Subject level | Strand | Student sample number | A | B | C | D | E |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18 | 1st | Mixed | 1 | i | 0 | 2 | 0 | 0 | 0 | 1 |
|  |  |  |  | ii | 0 | 2 | 0 | 0 | 0 | 1 |
|  |  |  |  | iii | 0 | 2 | 0 | 0 | 0 | 1 |
|  |  |  |  | iv | 0 | 1 | 0 | 0 | 0 | 0 |
|  |  |  |  | v | 0 | 2 | 0 | 0 | 0 | 1 |
|  |  |  |  | vi | 0 | 2 | 0 | 0 | 0 | 1 |
| 19 | 1st | Mixed | 1 | i | 0 | 0 | 0 | 1 | 0 | 0 |
| 20 | 2nd | HL | 2 | i | 2 | 1 | 0 | 0 | 0 | 0 |
|  |  |  |  | ii | 2 | 2 | 0 | 1 | 0 | 1 |
|  |  |  |  | iii | 2 | 2 | 0 | 0 | 0 | 0 |
| 21 | 2nd | OL | 3 | i | 1 | 0 | 0 | 0 | 0 | 1 |
|  |  |  |  | ii | 1 | 1 | 0 | 0 | 0 | 1 |
|  |  |  |  | iii | 1 | 1 | 0 | 0 | 0 | 1 |
| 22 | 3rd | HL | 1 | i | 2 | 2 | 0 | 2 | 2 | 2 |
| 23 | 3rd | HL | 1 | i | 1 | 2 | 0 | 1 | 0 | 0 |
| 24 | 3rd | HL | 1 | i | 2 | 2 | 0 | 0 | 0 | 1 |
| 25 | 3rd | HL | 1 | i | 2 | 3 | 0 | 0 | 0 | 1 |
|  |  |  |  | ii | 2 | 3 | 1 | 1 | 0 | 1 |
| 26 | 3rd | HL | 1 | i | 3 | 3 | 3 | 2 | 1 | 3 |
|  |  |  |  | ii | 3 | 3 | 2 | 2 | 1 | 2 |
|  |  |  |  | iii | 2 | 2 | 1 | 1 | 1 | 2 |
| 27 | 3rd | OL | 1 | i | 3 | 3 | 0 | 1 | 0 | 2 |
|  |  |  |  | ii | 2 | 3 | 0 | 0 | 0 | 2 |
|  |  |  |  | iii | 2 | 3 | 0 | 0 | 0 | 2 |
| 28 | 3rd | OL | 1 | i | 0 | 1 | 0 | 0 | 0 | 1 |


|  |  |  |  | ii | 0 | 1 | 0 | 0 | 0 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | iii | 0 | 1 | 0 | 0 | 0 | 0 |
|  |  |  |  | iv | 0 | 2 | 2 | 1 | 0 | 0 |
| 29 | 3rd | OL | 2 | i | 2 | 3 | 0 | 0 | 0 | 0 |
|  |  |  |  | ii | 2 | 3 | 0 | 1 | 0 | 0 |
|  |  |  |  | iii | 1 | 2 | 0 | 1 | 0 | 0 |
| 30 | 3rd | OL | 2 | i | 1 | 2 | 1 | 1 | 2 | 1 |
|  |  |  |  | ii | 1 | 2 | 2 | 1 | 2 | 1 |
|  |  |  |  | iii | 1 | 2 | 2 | 1 | 2 | 1 |
| 31 | $3^{\text {ra }}$ | OL | 2 | i | 1 | 1 | 1 | 1 | 0 | 0 |
|  |  |  |  | ii | 1 | 1 | 1 | 1 | 0 | 0 |
|  |  |  |  | iii | 1 | 2 | 1 | 2 | 0 | 0 |
|  |  |  |  | iv | 1 | 2 | 1 | 1 | 0 | 0 |
|  |  |  |  | v | 1 | 2 | 1 | 1 | 0 | 1 |
|  |  |  |  | vi | 1 | 3 | 1 | 1 | 0 | 0 |
| 32 | 3rd | OL | 2 | i | 0 | 2 | 0 | 0 | 0 | 1 |
|  |  |  |  | ii | 0 | 2 | 0 | 0 | 0 | 1 |
|  |  |  |  | iii | 0 | 1 | 0 | 0 | 0 | 1 |
|  |  |  |  | iv | 0 | 2 | 0 | 0 | 0 | 1 |
| 33 | 3rd | HL | 2 | i | 0 | 3 | 0 | 0 | 0 | 0 |
| 34 | 3rd | HL | 2 | i | 0 | 3 | 0 | 0 | 0 | 0 |
| 35 | 3rd | HL | 2 | i | 2 | 3 | 0 | 2 | 1 | 2 |
|  |  |  |  | ii | 2 | 3 | 0 | 2 | 1 | 2 |
|  |  |  |  | iii | 2 | 3 | 0 | 2 | 1 | 2 |
|  |  |  |  | iv | 3 | 3 | 1 | 2 | 1 | 3 |
|  |  |  |  | v | 2 | 3 | 1 | 2 | 1 | 2 |
| 36 | 3rd | OL/FL | 2 | i | 2 | 1 | 2 | 0 | 0 | 1 |
| 37 | 3rd | HL | 2 | i | 0 | 2 | 0 | 3 | 0 | 2 |
|  |  |  |  | ii | 0 | 2 | 0 | 3 | 0 | 2 |
|  |  |  |  | iii | 0 | 2 | 0 | 3 | 0 | 2 |
| 38 | 3rd | OL | 4 | i | 0 | 3 | 0 | 0 | 0 | 0 |
|  |  |  |  | ii | 0 | 3 | 0 | 0 | 0 | 0 |
|  |  |  |  | iii | 0 | 3 | 0 | 0 | 0 | 0 |
| 39 | 3rd | HL | 4 | i | 0 | 3 | 0 | 0 | 0 | 0 |
|  |  |  |  | ii | 0 | 2 | 0 | 0 | 0 | 0 |
|  |  |  |  | iii | 0 | 3 | 0 | 0 | 0 | 0 |
| 40 | 5th | OL | 1 | i | 2 | 3 | 0 | 0 | 0 | 2 |
|  |  |  |  | ii | 3 | 3 | 0 | 0 | 0 | 2 |
| 41 | 5th | HL | 4 | i | 1 | 1 | 0 | 0 | 0 | 1 |
|  |  |  |  | ii | 1 | 2 | 0 | 1 | 0 | 0 |
|  |  |  |  | iii | 1 | 1 | 0 | 1 | 0 | 0 |
|  |  |  |  | iv | 2 | 2 | 1 | 2 | 0 | 1 |
|  |  |  |  | v | 1 | 2 | 1 | 2 | 0 | 1 |
|  |  |  |  | vi | 1 | 2 | 1 | 2 | 0 | 1 |
|  |  |  |  | vii | 1 | 2 | 1 | 1 | 0 | 1 |


| 42 | 5th | HL | 4 | i | 0 | 3 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | ii | 0 | 2 | 0 | 0 | 1 | 0 |
|  |  |  |  | iii | 0 | 2 | 0 | 0 | 1 | 0 |
| 43 | $5^{\text {th }}$ | OL | 4 | i | 2 | 2 | 2 | 2 | 0 | 2 |
|  |  |  |  | ii | 2 | 3 | 3 | 2 | 0 | 2 |
|  |  |  |  | iii | 1 | 1 | 0 | 0 | 0 | 1 |
| 44 | 5th | HL | 5 | i | 1 | 2 | 0 | 1 | 0 | 1 |
|  |  |  |  | ii | 1 | 2 | 0 | 1 | 0 | 1 |
| 45 | 6th | OL | 1 | i | 2 | 2 | 1 | 1 | 0 | 1 |
|  |  |  |  | ii | 2 | 2 | 2 | 1 | 0 | 1 |
|  |  |  |  | iii | 2 | 2 | 1 | 1 | 0 | 1 |
|  |  |  |  | iv | 2 | 2 | 1 | 2 | 0 | 1 |
|  |  |  |  | V | 2 | 2 | 1 | 1 | 0 | 1 |
| 46 | 6th | OL | 1 | i | 2 | 2 | 1 | 1 | 0 | 1 |
|  |  |  |  | ii | 2 | 1 | 1 | 1 | 0 | 1 |
|  |  |  |  | iii | 2 | 1 | 1 | 1 | 0 | 1 |
|  |  |  |  | iv | 2 | 1 | 1 | 1 | 0 | 1 |
| 47 | 6th | OL | 1 | i | 2 | 2 | 1 | 1 | 0 | 0 |
|  |  |  |  | ii | 2 | 2 | 1 | 1 | 0 | 0 |
|  |  |  |  | iii | 2 | 2 | 1 | 0 | 0 | 0 |
| 48 | 6th | HL | 2 | i | 2 | 1 | 1 | 0 | 0 | 2 |
| 49 | 6th | HL | 2 | i | 2 | 2 | 2 | 0 | 0 | 0 |
| 50 | 6th | HL | 2 | i | 2 | 3 | 0 | 0 | 0 | 1 |
| 51 | 6th | OL | 2 | i | 1 | 2 | 2 | 1 | 0 | 1 |
|  |  |  |  | ii | 1 | 1 | 2 | 1 | 0 | 1 |
|  |  |  |  | iii | 1 | 2 | 2 | 1 | 0 | 1 |
| 52 | 6th | OL | 3 | I | 2 | 3 | 0 | 0 | 2 | 2 |
|  |  |  |  | ii | 2 | 3 | 0 | 0 | 2 | 2 |
|  |  |  |  | iii | 2 | 3 | 0 | 0 | 2 | 2 |
| 53 | 6th | OL | 3 | i | 2 | 3 | 0 | 0 | 0 | 0 |
| 54 | 6th | OL | 3 | i | 2 | 3 | 0 | 0 | 0 | 0 |
| 55 | 6th | HL | 3 | i | 3 | 3 | 3 | 2 | 2 | 3 |
|  |  |  |  | ii | 1 | 1 | 0 | 0 | 0 | 0 |
|  |  |  |  | iii | 3 | 3 | 3 | 3 | 2 | 3 |
|  |  |  |  | iv | 3 | 3 | 3 | 3 | 2 | 2 |
|  |  |  |  | v | 3 | 3 | 3 | 3 | 2 | 2 |
|  |  |  |  | vi | 3 | 3 | 3 | 3 | 2 | 2 |
| 56 | $6^{\text {th }}$ | OL | 4 | i | 2 | 3 | 1 | 0 | 0 | 1 |
|  |  |  |  | ii | 2 | 3 | 1 | 1 | 0 | 0 |
|  |  |  |  | iii | 2 | 3 | 2 | 1 | 0 | 0 |
|  |  |  |  | iv | 2 | 3 | 2 | 1 | 0 | 0 |
|  |  |  |  | V | 2 | 3 | 1 | 1 | 0 | 0 |
| 57 | 6th | HL | 5 | i | 2 | 2 | 1 | 1 | 0 | 1 |
|  |  |  |  | ii | 2 | 3 | 2 | 1 | 0 | 2 |


|  |  |  |  | iii | 2 | 3 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 58 | 6 th | FL | 5 | I | 2 | 1 | 0 | 0 | 0 | 1 |
|  |  |  | ii | 2 | 1 | 0 | 0 | 0 | 1 |  |

## Appendix C: Data tables for the student attitude survey

This appendix sets out the findings of the student attitude survey for the class of 2013. Data for the class of 2012 is set out in full in NFER's interim report to NCCA (November 2012).

How often do you do these things in your mathematics lessons?

Table 1: We show our working to justify our answers

|  | Junior <br> Certificate <br> Phase one | Junior <br> Certificate | Leaving <br> Certificate <br> Phase one | Leaving <br> Certificate |
| :--- | ---: | ---: | ---: | ---: |
| Non-phase one |  |  |  |  |

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

Table 2: We think about maths problems and plan how to solve them
$\left.\begin{array}{lrrrr}\hline & \begin{array}{c}\text { Junior } \\ \text { Certificate } \\ \text { Phase one }\end{array} & \begin{array}{r}\text { Junior } \\ \text { Certificate }\end{array} & \begin{array}{r}\text { Leaving } \\ \text { Certificate }\end{array} & \begin{array}{r}\text { Leaving } \\ \text { Certificate }\end{array} \\ \text { Phase one one }\end{array} \begin{array}{l}\text { Non-phase one }\end{array}\right\}$

[^0]Source: NFER student survey, Autumn 2012

Table 3: We make links between different maths topics
$\left.\begin{array}{lrrrr}\hline & \begin{array}{c}\text { Junior } \\ \text { Certificate } \\ \text { Phase one }\end{array} & \begin{array}{r}\text { Junior } \\ \text { Cortificate }\end{array} & \begin{array}{r}\text { Leaving } \\ \text { Certificate } \\ \text { Phase one }\end{array} & \begin{array}{r}\text { Leaving } \\ \text { Certificate }\end{array} \\ \text { Non-phase one }\end{array}\right\}$

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

Table 4: We apply what we learn in maths to real life situations

|  | Junior <br> Certificate <br> Phase one | Junior <br> Cortificate | Leaving <br> Certificate <br> Phase one | Leaving <br> Certificate |
| :--- | ---: | ---: | ---: | ---: |
| Non-phase one |  |  |  |  |

Due to rounding, percentages may not sum to 100 .
Source: NFER student survey, Autumn 2012

Table 5: We do investigations to solve maths problems
$\left.\begin{array}{lrrrr}\hline & \begin{array}{c}\text { Junior } \\ \text { Certificate } \\ \text { Phase one }\end{array} & \begin{array}{r}\text { Junior } \\ \text { Certificate } \\ \text { Non-phase one }\end{array} & \begin{array}{r}\text { Leaving } \\ \text { Certificate } \\ \text { Phase one }\end{array} & \begin{array}{r}\text { Leaving } \\ \text { Certificate }\end{array} \\ \text { Non-phase one }\end{array}\right\}$

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

Table 6: We talk about our ideas using the language of maths

|  | Junior <br> Certificate <br> Phase one | Junior <br> Certificate | Leaving <br> Certificate <br> Phase one | Leaving <br> Certificate |
| :--- | ---: | ---: | ---: | ---: |
| Non-phase one |  |  |  |  |

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

Table 7: We work together in small groups or pairs

|  | Junior <br> Certificate <br> Phase one | Junior <br> Certificate | Leaving <br> Certificate <br> Phase one | Leaving <br> Certificate |
| :--- | ---: | ---: | ---: | ---: |
| Non-phase one |  |  |  |  |

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

Table 8: We use computers in maths lessons to help us solve problems
$\left.\begin{array}{lrrrr}\hline & \begin{array}{c}\text { Junior } \\ \text { Certificate } \\ \text { Phase one }\end{array} & \begin{array}{r}\text { Junior } \\ \text { Certificate }\end{array} & \begin{array}{r}\text { Leaving } \\ \text { Certificate } \\ \text { Phase one }\end{array} & \begin{array}{r}\text { Leaving } \\ \text { Certificate }\end{array} \\ \text { Non-phase one }\end{array}\right\}$

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

Table 9: We use text books in lessons then practise what we have learned in class and/or for homework

|  | Junior <br> Certificate <br> Phase one | Junior <br> Certificate | Leaving <br> Certificate <br> Phase one | Leaving <br> Certificate |
| :--- | ---: | ---: | ---: | ---: |
| Non-phase one |  |  |  |  |

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

Table 10: We copy what our teacher writes on the board then practice using examples
\(\left.$$
\begin{array}{lrrrr}\hline & \begin{array}{c}\text { Junior } \\
\text { Certificate } \\
\text { Phase one }\end{array} & \begin{array}{r}\text { Junior } \\
\text { Certificate } \\
\text { Non-phase one }\end{array} & \begin{array}{r}\text { Leaving } \\
\text { Certificate } \\
\text { Phase one }\end{array} & \begin{array}{r}\text { Leaving } \\
\text { Certificate }\end{array}
$$ <br>

Non-phase one\end{array}\right]\)| $\%$ |
| :--- |

Due to rounding, percentages may not sum to 100 .
Source: NFER student survey, Autumn 2012

Table 11: We practise exam questions in class

|  | Junior <br> Certificate <br> Phase one | Junior <br> Cortificate | Leaving <br> Certificate <br> Phase one | Leaving <br> Certificate |
| :--- | ---: | ---: | ---: | ---: |
| Non-phase one |  |  |  |  |

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

## How much do you agree with these statements about your mathematics lessons?

Table 12: My teacher gives me work that will challenge me to improve my skills
$\left.\begin{array}{lrrrr}\hline & \begin{array}{c}\text { Junior } \\ \text { Certificate } \\ \text { Phase one }\end{array} & \begin{array}{r}\text { Junior } \\ \text { Cortificate }\end{array} & \begin{array}{c}\text { Leaving } \\ \text { Certificate } \\ \text { Phase one }\end{array} & \begin{array}{r}\text { Leaving } \\ \text { Certificate }\end{array} \\ \text { Non-phase one }\end{array}\right\}$

Due to rounding, percentages may not sum to 100 .
Source: NFER student survey, Autumn 2012

Table 13: My teacher thinks I can do well in maths

|  | Junior Certificate Phase one | Junior Certificate Non-phase one | Leaving Certificate Phase one | Leaving Certificate Non-phase one |
| :---: | :---: | :---: | :---: | :---: |
|  | \% | \% | \% | \% |
| Agree a lot | 56 | 57 | 44 | 50 |
| Agree a little | 36 | 33 | 41 | 38 |
| Disagree a little | 5 | 6 | 9 | 9 |
| Disagree a lot | 1 | 3 | 2 | 2 |
| No response | 2 | 1 | 5 | 1 |
| Total \% | 100 | 100 | 100 | 100 |
| $\mathrm{N}=$ | 417 | 2248 | 413 | 2161 |

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

Table 14: I know what my teacher expects me to do

| Junior | Junior | Leaving | Leaving |
| ---: | ---: | ---: | ---: |
| Certificate | Certificate | Certificate | Certificate |
| Phase one | Non-phase one | Phase one | Non-phase one |


|  | $\%$ | $\%$ | $\%$ | $\%$ |
| :--- | ---: | ---: | ---: | ---: |
| Agree a lot | 65 | 61 | 54 | 59 |
| Agree a little | 25 | 29 | 31 | 32 |
| Disagree a little | 7 | 7 | 10 | 6 |
| Disagree a lot | 1 | 2 | 2 | 2 |
| No response | 2 | 1 | 2 | 1 |
| Total \% | 100 | 100 | 100 | 100 |
| $N=$ | 417 | 2248 | 413 | 2161 |

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

Table 15: My teacher helps me to understand if I am finding something difficult during a maths lesson

|  | Junior <br> Certificate <br> Phase one | Junior <br> Certificate | Leaving <br> Certificate <br> Phase one | Leaving <br> Certificate |
| :--- | ---: | ---: | ---: | ---: |
| $\%$ | $\%$ | $\%$ | $\%$ | $\%$ |
| Agree a lot | 68 | 67 | 64 | 69 |
| Agree a little | 22 | 22 | 21 | 20 |
| Disagree a little | 8 | 7 | 9 | 6 |
| Disagree a lot | 1 | 3 | 2 | 3 |
| No response | 2 | $<1$ | 3 | 1 |
| Total \% | 100 | 100 | 100 | 100 |
| $N=$ | 417 | 2248 | 413 | 2161 |

Due to rounding, percentages may not sum to 100 .
Source: NFER student survey, Autumn 2012

Table 16: My teacher is easy to understand

|  | Junior <br> Certificate <br> Phase one | Junior <br> Cortificate | Leaving <br> Certificate <br> Phase one | Leaving <br> Certificate |
| :--- | ---: | ---: | ---: | ---: |
| $\%$ | $\%$ | $\%$ | $\%$ |  |
| Agree a lot | 55 | 50 | 52 | 54 |
| Agree a little | 31 | 30 | 28 | 30 |
| Disagree a little | 10 | 13 | 13 | 10 |
| Disagree a lot | 2 | 7 | 5 | 5 |
| No response | 1 | 1 | 3 | $<1$ |
| Total \% | 100 | 100 | 100 | 100 |
| $N=$ | 417 | 2248 | 413 | 2161 |

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

Table17: My teacher explains maths in ways that make it interesting

|  | Junior <br> Certificate <br> Phase one | Junior <br> Con-phase one | Leaving <br> Certificate <br> Phase one | Leaving <br> Certificate |
| :--- | ---: | ---: | ---: | ---: |
| Non-phase one |  |  |  |  |

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

Table 18: My teacher sets me work to suit my abilities and interests

|  | Junior <br> Certificate <br> Phase one | Junior <br> Certificate | Leaving <br> Certificate <br> Phase one | Leaving <br> Certificate |
| :--- | ---: | ---: | ---: | ---: |
|  | $\%$ | $\%$ | $\%$ | $\%$ |
| Agree a lot | 19 | 22 | 14 | 15 |
| Agree a little | 43 | 40 | 41 | 38 |
| Disagree a little | 22 | 24 | 23 | 26 |
| Disagree a lot | 14 | 13 | 20 | 20 |
| No response | 1 | 1 | 2 | 1 |
| Total \% | 100 | 100 | 100 | 100 |
| $N=$ | 417 | 2248 | 413 | 2161 |

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

Table 19: My teacher will decide if I should do Foundation Level, Ordinary Level or Higher Level

|  | Junior <br> Certificate <br> Phase one | Junior <br> Certificate | Leaving <br> Certificate <br> Phase one | Leaving <br> Certificate |
| :--- | ---: | ---: | ---: | ---: |
| $\%$ | $\%$ | $\%$ | $\%$ | $\%$ |
| Agree a lot | 19 | 27 | 9 | 11 |
| Agree a little | 33 | 32 | 23 | 22 |
| Disagree a little | 31 | 22 | 27 | 26 |
| Disagree a lot | 15 | 19 | 38 | 40 |
| No response | 1 | 1 | 4 | $<1$ |
| Total \% | 100 | 100 | 100 | 100 |
| $N=$ | 417 | 2248 | 413 | 2161 |

Due to rounding, percentages may not sum to 100 .
Source: NFER student survey, Autumn 2012

Table 20: The way we learn maths at Junior Certificate level is harder than maths in primary school

|  | Junior Certificate <br> Phase one | Junior Certificate <br> Non-phase one |
| :--- | ---: | ---: |
|  | $\%$ | $\%$ |
| Often | 64 | 69 |
| Sometimes | 24 | 21 |
| Rarely | 6 | 5 |
| Never | 4 | 3 |
| No response | 2 | 1 |
| Total \% | 100 | 100 |
| $N=$ | 417 | 2248 |

Due to rounding, percentages may not sum to 100 .
NFER student survey, Autumn 2012

Table 21: The way we learn maths at Leaving Certificate Level is the same as how we learned maths for the Junior Certificate

|  | Leaving Certificate <br> Phase one | Leaving Certificate <br> Non-phase one |
| :--- | ---: | ---: |
|  | $\%$ | $\%$ |
| Often | 14 | 19 |
| Sometimes | 31 | 35 |
| Rarely | 30 | 26 |
| Never | 23 | 20 |
| No response | 2 | 1 |
| Total \% | 100 | 100 |
| N = | 413 | 2161 |

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

## How much do you agree with these statements about learning mathematics?

Table 22: I usually do well in maths

| Junior | Junior | Leaving | Leaving |
| ---: | ---: | ---: | ---: |
| Certificate | Certificate | Certificate | Certificate |
| Phase one | Non-phase one | Phase one | Non-phase one |


|  | $\%$ | $\%$ | $\%$ | $\%$ |
| :--- | ---: | ---: | ---: | ---: |
| Agree a lot | 32 | 31 | 23 | 21 |
| Agree a little | 46 | 47 | 46 | 49 |
| Disagree a little | 17 | 15 | 21 | 20 |
| Disagree a lot | 4 | 6 | 8 | 9 |
| No response | 1 | $<1$ | 2 | $<1$ |
| Total \% | 100 | 100 | 100 | 100 |
| $N=$ | 417 | 2248 | 413 | 2161 |

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

Table 23: I would like to take more maths in school
\(\left.$$
\begin{array}{lrrrr}\hline & \begin{array}{c}\text { Junior } \\
\text { Certificate } \\
\text { Phase one }\end{array} & \begin{array}{r}\text { Junior } \\
\text { Cortificate }\end{array} & \begin{array}{c}\text { Leaving } \\
\text { Certificate } \\
\text { Phase one }\end{array} & \begin{array}{r}\text { Leaving } \\
\text { Certificate }\end{array}
$$ <br>

Non-phase one\end{array}\right]\)| $\%$ |
| :--- |

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

Table 24: Maths is more difficult for me than many of my classmates

|  | Junior <br> Certificate <br> Phase one | Junior <br> Certificate | Leaving <br> Certificate <br> Phase one | Leaving <br> Certificate |
| :--- | ---: | ---: | ---: | ---: |
|  | $\%$ | $\%$ | $\%$ | $\%$ |
| Agree a lot | 11 | 13 | 14 | 13 |
| Agree a little | 24 | 25 | 24 | 27 |
| Disagree a little | 36 | 36 | 38 | 37 |
| Disagree a lot | 27 | 25 | 21 | 23 |
| No response | 2 | 1 | 3 | 1 |
| Total \% | 100 | 100 | 100 | 100 |
| $N=$ | 417 | 2248 | 413 | 2161 |

Due to rounding, percentages may not sum to 100 .
Source: NFER student survey, Autumn 2012

Table 25: I enjoy learning maths

|  | Junior Certificate Phase one | Junior Certificate Non-phase one | Leaving Certificate Phase one | Leaving Certificate Non-phase one |
| :---: | :---: | :---: | :---: | :---: |
|  | \% | \% | \% | \% |
| Agree a lot | 24 | 23 | 20 | 19 |
| Agree a little | 41 | 37 | 32 | 38 |
| Disagree a little | 22 | 23 | 23 | 23 |
| Disagree a lot | 12 | 16 | 22 | 20 |
| No response | 1 | 1 | 2 | <1 |
| Total \% | 100 | 100 | 100 | 100 |
| $\mathrm{N}=$ | 417 | 2248 | 413 | 2161 |

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

Table 26: Maths is not one of my strengths
\(\left.$$
\begin{array}{lrrrr}\hline & \begin{array}{c}\text { Junior } \\
\text { Certificate } \\
\text { Phase one }\end{array} & \begin{array}{r}\text { Junior } \\
\text { Certificate }\end{array} & \begin{array}{c}\text { Leaving } \\
\text { Certificate } \\
\text { Phase one }\end{array} & \begin{array}{r}\text { Leaving } \\
\text { Certificate }\end{array}
$$ <br>

Non-phase one\end{array}\right]\)| $\%$ |
| :--- |

Due to rounding, percentages may not sum to 100 .
Source: NFER student survey, Autumn 2012

Table 27: I learn things quickly in maths

|  | Junior Certificate Phase one | Junior Certificate Non-phase one | Leaving Certificate Phase one | Leaving Certificate Non-phase one |
| :---: | :---: | :---: | :---: | :---: |
|  | \% | \% | \% | \% |
| Agree a lot | 21 | 19 | 15 | 16 |
| Agree a little | 42 | 41 | 33 | 37 |
| Disagree a little | 26 | 27 | 33 | 32 |
| Disagree a lot | 10 | 12 | 16 | 14 |
| No response | 2 | 1 | 2 | 1 |
| Total \% | 100 | 100 | 100 | 100 |
| $\mathrm{N}=$ | 417 | 2248 | 413 | 2161 |

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

Table 28: Maths is boring
$\left.\begin{array}{lrrrr}\hline & \begin{array}{c}\text { Junior } \\ \text { Certificate } \\ \text { Phase one }\end{array} & \begin{array}{r}\text { Junior } \\ \text { Certificate }\end{array} & \begin{array}{c}\text { Leaving } \\ \text { Certificate }\end{array} & \begin{array}{r}\text { Leaving } \\ \text { Certificate }\end{array} \\ \hline \text { Phase one }\end{array} \begin{array}{lrrr}\text { Non-phase one }\end{array}\right)$

Due to rounding, percentages may not sum to 100 .
Source: NFER student survey, Autumn 2012

Table 29: I like maths
$\left.\begin{array}{lrrrr}\hline & \begin{array}{c}\text { Junior } \\ \text { Certificate } \\ \text { Phase one }\end{array} & \begin{array}{r}\text { Junior } \\ \text { Certificate }\end{array} & \begin{array}{c}\text { Leaving } \\ \text { Certificate }\end{array} & \begin{array}{r}\text { Leaving } \\ \text { Certificate }\end{array} \\ \text { Phase one }\end{array} \begin{array}{l}\text { Non-phase one }\end{array}\right)$

Due to rounding, percentages may not sum to 100 .
Source: NFER student survey, Autumn 2012

## How confident do you feel when doing the following types of activities during mathematics lessons?

Table 30: If I were asked to work out the probability of something happening
$\left.\begin{array}{lrrrr}\hline & \begin{array}{r}\text { Junior } \\ \text { Certificate } \\ \text { Phase one }\end{array} & \begin{array}{r}\text { Junior } \\ \text { Certificate } \\ \text { Non-phase } \\ \text { one }\end{array} & \begin{array}{r}\text { Leaving } \\ \text { Certificate } \\ \text { Phase one }\end{array} & \begin{array}{r}\text { Leaving } \\ \text { Certificate } \\ \text { Non-phase }\end{array} \\ \text { one }\end{array}\right\}$

[^1]Source: NFER student survey, Autumn 2012

Table 31: If I were asked to draw charts like these to display your data
\(\left.$$
\begin{array}{lrrrr}\hline & \begin{array}{r}\text { Junior } \\
\text { Certificate } \\
\text { Phase one }\end{array} & \begin{array}{r}\text { Junior } \\
\text { Certificate } \\
\text { Non-phase } \\
\text { one }\end{array} & \begin{array}{r}\text { Leaving } \\
\text { Certificate } \\
\text { Phase one }\end{array} & \begin{array}{r}\text { Leaving } \\
\text { Certificate } \\
\text { Non-phase }\end{array}
$$ <br>

one\end{array}\right]\)| $\%$ |
| :--- |

Due to rounding, percentages may not sum to 100 .
Source: NFER student survey, Autumn 2012

Table 32: If I were asked to make different shapes

|  | Junior <br> Certificate <br> Phase one | Junior <br> Certificate <br> Non-phase <br> one | Leaving <br> Certificate <br> Phase one | Len-phase <br> Certificate <br> None |
| :--- | ---: | ---: | ---: | ---: |
| $\%$ | $\%$ | $\%$ | $\%$ |  |
| I would find it very easy | 66 | 66 | 60 | 68 |
| I would find it easy | 28 | 24 | 24 | 24 |
| I would find it a little <br> difficult | 3 | 7 | 9 | 6 |
| I would find it very <br> difficult |  |  |  | 1 |

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

Table 33: If I were asked to solve problems using the properties of different shapes
$\left.\left.\begin{array}{lrrrr}\hline & \begin{array}{r}\text { Junior } \\ \text { Certificate }\end{array} & \begin{array}{r}\text { Junior } \\ \text { Certificate } \\ \text { Non-phase }\end{array} & \begin{array}{r}\text { Leaving } \\ \text { Chase one }\end{array} \\ \text { one } \\ \text { Certificate } \\ \text { Phase one }\end{array}\right) \begin{array}{r}\text { Certificate } \\ \text { Non-phase }\end{array}\right)$

Due to rounding, percentages may not sum to 100 .
Source: NFER student survey, Autumn 2012

Table 34: If I were asked to solve problems using trigonometry
$\left.\begin{array}{lrrrr}\hline & \begin{array}{r}\text { Junior } \\ \text { Certificate } \\ \text { Phase one }\end{array} & \begin{array}{r}\text { Junior } \\ \text { Certificate } \\ \text { Non-phase } \\ \text { one }\end{array} & \begin{array}{r}\text { Leaving } \\ \text { Certificate } \\ \text { Phase one }\end{array} & \begin{array}{r}\text { Certificate } \\ \text { Non-phase }\end{array} \\ \text { one }\end{array}\right)$

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

Table 35: If I were asked to use formulae to solve problems in measurement

|  | Junior <br> Certificate <br> Phase one | Junior <br> Certificate <br> Non-phase <br> one | Leaving <br> Certificate <br> Phase one | Len-phase <br> Certificate <br> None |
| :--- | ---: | ---: | ---: | ---: |
| $\%$ | $\%$ | $\%$ | one |  |

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

Table 36: If I were asked to solve problems using algebra
$\left.\begin{array}{lrrrr}\hline & \begin{array}{r}\text { Junior } \\ \text { Certificate } \\ \text { Phase one }\end{array} & \begin{array}{r}\text { Junior } \\ \text { Certificate } \\ \text { Non-phase } \\ \text { one }\end{array} & \begin{array}{r}\text { Leaving } \\ \text { Certificate } \\ \text { Phase one }\end{array} & \begin{array}{r}\text { Con-phase } \\ \text { Certificate }\end{array} \\ \text { one }\end{array}\right)$

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

Table 37: If I were asked to represent this relationship in a graph
$\left.\begin{array}{lrrrr}\hline & \begin{array}{r}\text { Junior } \\ \text { Certificate } \\ \text { Phase one }\end{array} & \begin{array}{r}\text { Junior } \\ \text { Certificate } \\ \text { Non-phase } \\ \text { one }\end{array} & \begin{array}{r}\text { Leaving } \\ \text { Certificate } \\ \text { Phase one }\end{array} & \begin{array}{r}\text { Lertificate } \\ \text { Non-phase }\end{array} \\ \text { one }\end{array}\right)$

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

Table 38: If I were asked to use maths to solve problems based on real-life situations
\(\left.$$
\begin{array}{lrrrr}\hline & \begin{array}{r}\text { Junior } \\
\text { Certificate } \\
\text { Phase one }\end{array} & \begin{array}{r}\text { Junior } \\
\text { Certificate } \\
\text { Non-phase } \\
\text { one }\end{array} & \begin{array}{r}\text { Leaving } \\
\text { Certificate } \\
\text { Phase one }\end{array} & \begin{array}{r}\text { Leaving } \\
\text { Certificate } \\
\text { Non-phase }\end{array}
$$ <br>

one\end{array}\right]\)| $\%$ |
| :--- |

[^2][^3]Table 39: If I were asked to solve maths problems using what I have learned in more than one maths topic

|  | Junior <br> Certificate Phase one | Junior <br> Certificate Non-phase one | Leaving Certificate Phase one | Leaving Certificate Non-phase one |
| :---: | :---: | :---: | :---: | :---: |
|  | \% | \% | \% | \% |
| I would find it very easy | 19 | 21 | 17 | 20 |
| I would find it easy | 47 | 42 | 40 | 40 |
| I would find it a little difficult | 29 | 31 | 33 | 34 |
| I would find it very difficult | 4 | 5 | 6 | 4 |
| No response | 2 | 1 | 4 | 1 |
| Total \% | 100 | 100 | 100 | 100 |
| $\mathrm{N}=$ | 417 | 2248 | 413 | 2161 |

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

Table 40: If I were asked to gather all the information available, and then use it to solve a particular maths problem

|  | Junior <br> Certificate <br> Phase one | Junior <br> Certificate <br> Non-phase <br> one | Leaving <br> Certificate <br> Phase one | Len-phase <br> Certificate <br> None |
| :--- | ---: | ---: | ---: | ---: |
| $\%$ | $\%$ | $\%$ | $\%$ |  |
| I would find it very easy | 14 | 18 | 13 | 16 |
| I would find it easy | 49 | 47 | 39 | 42 |
| I would find it a little <br> difficult | 30 | 29 | 38 | 36 |
| I would find it very <br> difficult |  |  |  | 6 |

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

How much do you agree with these statements about mathematics?

Table 41: I think learning maths will help me in my daily life

|  | Junior <br> Certificate <br> Phase one | Junior <br> Cortificate | Leaving <br> Certificate <br> Phase one | Leaving <br> Certificate |
| :--- | ---: | ---: | ---: | ---: |
|  | $\%$ | $\%$ | $\%$ | $\%$ |
| Agree a lot | 37 | 40 | 18 | 21 |
| Agree a little | 42 | 40 | 44 | 45 |
| Disagree a little | 14 | 14 | 22 | 22 |
| Disagree a lot | 5 | 5 | 12 | 11 |
| No response | 1 | 1 | 4 | 1 |
| Total \% | 100 | 100 | 100 | 100 |
| $N=$ | 417 | 2248 | 413 | 2161 |

Due to rounding, percentages may not sum to 100 .
Source: NFER student survey, Autumn 2012

Table 42: I need maths to learn other school subjects

|  | Junior Certificate Phase one | Junior Certificate Non-phase one | Leaving Certificate Phase one | Leaving Certificate Non-phase one |
| :---: | :---: | :---: | :---: | :---: |
|  | \% | \% | \% | \% |
| Agree a lot | 22 | 25 | 16 | 14 |
| Agree a little | 50 | 46 | 30 | 35 |
| Disagree a little | 21 | 21 | 28 | 32 |
| Disagree a lot | 6 | 8 | 22 | 19 |
| No response | 1 | 1 | 4 | 1 |
| Total \% | 100 | 100 | 100 | 100 |
| $\mathrm{N}=$ | 417 | 2248 | 413 | 2161 |

Due to rounding, percentages may not sum to 100 .
Source: NFER student survey, Autumn 2012

Table 43: I need to do well in maths to get into the university of my choice

|  | Junior <br> Certificate Phase one | Junior Certificate Non-phase one | Leaving Certificate Phase one | Leaving Certificate Non-phase one |
| :---: | :---: | :---: | :---: | :---: |
|  | \% | \% | \% | \% |
| Agree a lot | 62 | 61 | 36 | 38 |
| Agree a little | 27 | 28 | 30 | 32 |
| Disagree a little | 8 | 7 | 19 | 17 |
| Disagree a lot | 1 | 3 | 12 | 12 |
| No response | 2 | 1 | 4 | 1 |
| Total \% | 100 | 100 | 100 | 100 |
| $\mathrm{N}=$ | 417 | 2248 | 413 | 2161 |

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

Table 44: I need to do well in maths to get the job I want

|  | Junior Certificate Phase one | Junior Certificate Non-phase one | Leaving Certificate Phase one | Leaving Certificate Non-phase one |
| :---: | :---: | :---: | :---: | :---: |
|  | \% | \% | \% | \% |
| Agree a lot | 50 | 48 | 19 | 23 |
| Agree a little | 30 | 31 | 29 | 31 |
| Disagree a little | 13 | 14 | 27 | 26 |
| Disagree a lot | 4 | 6 | 20 | 19 |
| No response | 2 | 1 | 5 | 1 |
| Total \% | 100 | 100 | 100 | 100 |
| $\mathrm{N}=$ | 417 | 2248 | 413 | 2161 |

Due to rounding, percentages may not sum to 100 .
Source: NFER student survey, Autumn 2012

Table 45: Please tick the box that best describes the further study you plan to do after finishing your Leaving Certificate?

|  | Leaving Certificate <br> Phase one <br> $\%$ | Leaving Certificate <br> Non-phase one |
| :--- | ---: | ---: |
|  | $\%$ | 13 |
| University, doing a course that <br> will involve a lot of maths | 13 | 13 |
| University, doing a course that <br> will involve some maths | 30 | 31 |
| A technical or vocational <br> course that will involve maths | 3 | 5 |
| University, doing a course that <br> won't involve maths | 40 | 39 |
| Other | 10 | 8 |
| No response | 4 | 4 |
| Total \% | 100 | 100 |
| $N=$ | 360 | 1976 |

Due to rounding, percentages may not sum to 100.
A filter question: all those who answered [Q13A=1].
Source: NFER student survey, Autumn 2012

Table 46: Are you currently planning to stay on at school after your Junior Certificate?

|  | Junior Certificate <br> phase one | Junior Certificate <br> Non-phase one |
| :--- | ---: | ---: |
|  | $\%$ | $\%$ |
| Yes | 96 | 94 |
| No | 1 | 3 |
| No response | 3 | 3 |
| Total \% | 100 | 100 |
| $N=$ | 417 | 2248 |

[^4]Source: NFER student survey, Autumn 2012

Table 47: If yes, at what level would you like to take your maths Leaving Certificate examination?

|  | Junior Certificate <br> Phase one | Junior Certificate <br> Non-phase one |
| :--- | ---: | ---: |
| Foundation Level | $\%$ | $\%$ |
| Ordinary Level | $<1$ | 1 |
| Higher Level | 19 | 33 |
| No response | 80 | 65 |
| Total \% | 1 | 1 |
| $N=$ | 100 | 100 |

Due to rounding, percentages may not sum to 100.
A filter question: all those who answered [Q11A=1].
Source: NFER student survey, Autumn 2012

## Which of these jobs do you think involve doing mathematics?

Table 48: Engineer

|  | Junior <br> Certificate <br> Phase one | Junior <br> Certificate | Leaving <br> Certificate <br> Nhase one | Leaving <br> Certificate |
| :--- | ---: | ---: | ---: | ---: |
|  | $\%$ | $\%$ Non-phase one |  |  |

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

Table 49: Doctor

|  | Junior <br> Certificate <br> Phase one | Junior <br> Cortificate | Leaving <br> Certificate <br> Phase one | Leaving <br> Certificate |
| :--- | ---: | ---: | ---: | ---: |
| Non-phase one |  |  |  |  |

Due to rounding, percentages may not sum to 100 .
Source: NFER student survey, Autumn 2012

Table 50: Sales assistant
\(\left.$$
\begin{array}{lrrrr}\hline & \begin{array}{c}\text { Junior } \\
\text { Certificate } \\
\text { Phase one }\end{array} & \begin{array}{r}\text { Junior } \\
\text { Certificate }\end{array} & \begin{array}{r}\text { Leaving } \\
\text { Certificate } \\
\text { Phase one }\end{array} & \begin{array}{r}\text { Leaving } \\
\text { Certificate }\end{array}
$$ <br>

Non-phase one one\end{array}\right]\)| $\%$ |
| :--- |

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

Table 51: Scientist

|  | Junior <br> Certificate Phase one | Junior Certificate Non-phase one | Leaving Certificate Phase one | Leaving Certificate Non-phase one |
| :---: | :---: | :---: | :---: | :---: |
|  | \% | \% | \% | \% |
| Yes | 89 | 87 | 85 | 89 |
| No | 8 | 10 | 10 | 9 |
| No response | 3 | 3 | 5 | 3 |
| Total \% | 100 | 100 | 100 | 100 |
| $\mathrm{N}=$ | 417 | 2248 | 413 | 2161 |

Due to rounding, percentages may not sum to 100 .
Source: NFER student survey, Autumn 2012

Table 52: Working with technology

|  | Junior <br> Certificate <br> Phase one | Junior <br> Cortificate | Leaving <br> Certificate <br> Phase one | Leaving <br> Certificate |
| :--- | ---: | ---: | ---: | ---: |
| Non-phase one |  |  |  |  |

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

Table 53: Accountant

|  | Junior <br> Certificate <br> Phase one | Junior <br> Cortificate | Leaving <br> Certificate <br> Nhase one | Leaving <br> Certificate |
| :--- | ---: | ---: | ---: | ---: |
| Non-phase one |  |  |  |  |

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

Table 54: Nurse

|  | Junior <br> Certificate <br> Phase one | Junior <br> Cortificate | Leaving <br> Certificate <br> Phase one | Leaving <br> Certificate |
| :--- | ---: | ---: | ---: | ---: |
| Non-phase one |  |  |  |  |

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

Table 55: Fashion Designer

|  | Junior <br> Certificate <br> Phase one | Junior <br> Certificate | Leaving <br> Certificate <br> Phase one | Leaving <br> Certificate |
| :--- | ---: | ---: | ---: | ---: |
| Non-phase one |  |  |  |  |

Due to rounding, percentages may not sum to 100 .
Source: NFER student survey, Autumn 2012

Table 56: Owning my own business

|  | Junior <br> Certificate <br> Phase one | Junior <br> Cortificate | Leaving <br> Certificate <br> Phase one | Leaving <br> Certificate |
| :--- | ---: | ---: | ---: | ---: |
| Non-phase one |  |  |  |  |

Due to rounding, percentages may not sum to 100.
Source: NFER student survey, Autumn 2012

Table 57: Are you currently thinking of doing a job that involves maths?

|  | Leaving Certificate <br> Phase one | Leaving Certificate <br> Non-phase one |
| :--- | ---: | ---: |
|  | $\%$ | $\%$ |
| Yes | 32 | 32 |
| No | 60 | 65 |
| No | 8 | 3 |
| response | 100 | 100 |
| Total \% | 413 | 2161 |
| $N=$ |  |  |

Due to rounding, percentages may not sum to 100 .
Source: NFER student survey, Autumn 2012

# Appendix D: Students' performance in relation to individual strands of the revised mathematics curriculum 

This appendix sets out the details of students' performance in relation to individual strands of the revised curriculum, comparing students' attainment and attitudes in the class of 2013 to the class of 2012. Data for the class of 2012 is set out in full in NFER's interim report to NCCA (November 2012).

## Overview of students' performance in each strand of the revised syllabuses

Tables 1 and 2 provide a comparison of Junior Certificate and Leaving Certificate students' performance in the assessment phase of the research. It includes comparison between phase of study (phase one and non-phase one) and year group (class of 2012 and class of 2013). For reference, the booklet labels correspond to the following strands:

- JC 1/2/5: Junior Certificate Strands 1, 2 and 5
- JC 3/4/5: Junior Certificate Strands 3, 4 and 5
- LC 1/2/5: Leaving Certificate Strands 1,2 and 5 (in Spring 2012 Strands 1 and 2 were referred to as SPLC1 and GTLC2 respectively)
- LC 3/4/5: Leaving Certificate Strands 3, 4 and 5 (in Spring 2012, booklets were referred to as NLC3 (Strand 3), ALC4 (Strand 4) and FLC5 (Strand 5).

Coloured shading highlights items where performance has changed. Pale green denotes an increase of 6-10 percentage points inclusive, while darker green shading is used for increases over 10 percentage points. Pale and dark orange shading is used for decreases of the same magnitude.

Table 1: Comparison of Junior Certificate students' performance

| Booklet | Item | Syllabus area assessed | Phase one students Class of 2012 |  | Phase one students Class of 2013 |  | Non-phase one students Class of 2012 |  | Non-phase one students Class of 2013 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Facility (\%) | \% Omit | Facility (\%) | \% <br> Omit | Facility (\%) | \% <br> Omit | Facility (\%) | \% |
| JC1/2/5 | 1 | 1.2 | 87 | 1 | 89 | 0 | 87 | 0 | 86 | 1 |
|  | 2 | 1.7 | 96 | 0 | 98 | 0 | 95 | 1 | 93 | 1 |
|  | 3 | 1.6 | $\geq 1 \mathrm{~m}: 682 \mathrm{~m}: 62$ | 3 | $\geq 1 \mathrm{~m}: 712 \mathrm{~m}: 65$ | 2 | $\geq 1 \mathrm{~m}: 68$ 2m: 60 | 4 | $\geq 1 \mathrm{~m}: 602 \mathrm{~m}: 54$ | 4 |
|  | 4 | 1.3 | 86 | 1 | 84 | 0 | 76 | 1 | 78 | 1 |
|  | 5 | 1.6 | 95 | 1 | 97 | 0 | 94 | 1 | 90 | 2 |
|  | 6a | 1.7 | $\geq 1 \mathrm{~m}: 642 \mathrm{~m}: 47$ | 14 | $\geq 1 \mathrm{~m}: 652 \mathrm{~m}: 42$ | 11 | 21m: $612 \mathrm{~m}: 40$ | 17 | $\geq 1 \mathrm{~m}: 52$ 2m: 32 | 19 |
|  | 6 b | 1.7 | $\geq 1 \mathrm{~m}: 572 \mathrm{~m}: 33$ | 17 | $\geq 1 \mathrm{~m}: 542 \mathrm{~m}: 29$ | 12 | $\geq 1 \mathrm{~m}: 55 \mathrm{~m}$ : 28 | 17 | $\geq 1 \mathrm{~m}: 462 \mathrm{~m}: 20$ | 21 |
|  | 6c | 1.7 | 47 | 16 | 60 | 13 | 47 | 17 | 44 | 18 |
|  | 7 a | 1.6 | 73 | 2 | 69 | 1 | 74 | 1 | 53 | 2 |
|  | 7b | 1.7 | $\geq 1 \mathrm{~m}: 762 \mathrm{~m}: 41$ | 1 | $\geq 1 \mathrm{~m}: 77$ 2m: 47 | 0 | 21m: $742 \mathrm{~m}: 37$ | 1 | $\geq 1 \mathrm{~m}: 682 \mathrm{~m}: 32$ | 2 |
|  | 8 | 1.3 | 71 | 1 | 68 | 3 | 70 | 2 | 65 | 3 |
|  | 9 | 1.4 | 22 | 2 | 23 | 9 | 19 | 3 | 18 | 6 |
|  | 10 | 1.3 | 60 | 5 | 70 | 4 | 52 | 10 | 54 | 10 |
|  | 11 | 1.4 | $\geq 1 \mathrm{~m}: 542 \mathrm{~m}: 17$ | 10 | $\geq 1 \mathrm{~m}: 562 \mathrm{~m}: 20$ | 8 | ¹m: 45 2m: 13 | 12 | $\geq 1 \mathrm{~m}: 412 \mathrm{~m}: 17$ | 13 |
|  | 12 | 2.3 | 87 | 2 | 82 | 2 | 82 | 2 | 73 | 5 |
|  | 13 | 2.1 | 59 | 4 | 55 | 4 | 52 | 3 | 43 | 4 |
|  | 14 | 2.1 | 67 | 3 | 67 | 5 | 59 | 4 | 58 | 5 |
|  | 15 | 2.1 | 64 | 5 | 71 | 5 | 68 | 4 | 62 | 4 |
|  | 16 | 2.1 | 37 | 4 | 28 | 6 | 40 | 4 | 34 | 5 |
|  | 17 | 2.2 | 76 | 4 | 82 | 3 | 81 | 4 | 74 | 4 |
|  | 18 | 2.3 | 73 | 4 | 64 | 5 | 65 | 5 | 57 | 8 |
|  | 19 | 2.1 | 51 | 19 | 54 | 13 | 46 | 17 | 38 | 24 |
|  | 20 | 2.1 | 35 | 14 | 36 | 10 | 41 | 15 | 26 | 21 |
|  | 21 | 2.1 | 65 | 5 | 55 | 8 | 56 | 8 | 44 | 15 |
| JC3/4/5 | 1 | 3.1 | 77 | 1 | 81 | 0 | - | - | - | - |
|  | 2 | 3.2 | 90 | 0 | 95 | 0 | - | - | - | - |
|  | 3 | 3.1 | 69 | 2 | 67 | 0 | - | - | - | - |
|  | 4 | 3.1 | 50 | 9 | 49 | 8 | - | - | - | - |
|  | 5 | 3.4 | 83 | 1 | 88 | 1 | - | - | - | - |


|  | 6 | 3.1 | 72 | 2 | 80 | 0 | - | - | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 7 | 3.1 | 59 | 2 | 63 | 3 | - | - | - | - |
|  | 8 | 3.4 | 3 | 11 | 2 | 7 | - | - | - | - |
|  | 9 | 3.4 | 93 | 2 | 95 | 1 | - | - | - | - |
|  | 10a | 3.3 | 74 | 3 | 90 | 0 | - | - | - |  |
|  | 10b | 3.3 | 34 | 11 | 40 | 5 | - | - | - | - |
|  | 11 | 3.1 | 10 | 3 | 8 | 1 | - | - | - | - |
|  | 12 | 4.2 | $\geq 1 \mathrm{~m}: 29$ 2m: 17 | 8 | $\geq 1 \mathrm{~m}: 302 \mathrm{~m}: 19$ | 7 | - | - | - | - |
|  | 13a | 4.2 | $\geq 1 \mathrm{~m}: 742 \mathrm{~m}: 66$ | 2 | $\geq 1 \mathrm{~m}: 75$ 2m: 63 | 1 | - | - | - |  |
|  | 13b | 4.7 | 29 | 37 | 26 | 26 | - | - | - | - |
|  | 13c | 4.4 | $\geq 1 \mathrm{~m}: 212 \mathrm{~m}: 9$ | 31 | $\geq 1 \mathrm{~m}: 262 \mathrm{~m}: 8$ | 16 | - | - | - | - |
|  | 14 | 4.5 | 14 | 18 | 19 | 17 | - | - | - | - |
|  | 15 | 4.7 | 38 | 4 | 37 | 5 | - | - | - | - |
|  | 16 | 4.6 | 73 | 4 | 73 | 3 | - | - | - | - |
|  | 17 | 4.3 | 65 | 4 | 63 | 3 | - | - | - | - |
|  | 18 | 4.6 | 54 | 5 | 53 | 4 | - | - | - | - |
|  | 19 | 4.7 | 57 | 4 | 53 | 8 | - | - | - | - |
|  | 20 | 4.4 | 36 | 5 | 30 | 8 | - | - | - | - |
|  | 21 | 4.3 | 46 | 5 | 45 | 8 | - | - | - | - |
| JC1/2/5 | 22 | 5.2 | - | - | 56 | 9 | - | - | - | - |
| $\begin{aligned} & \& \\ & \mathrm{JC} 3 / 4 / 5 \end{aligned}$ | 23 | 5.2 | - | - | 23 | 14 | - | - | - | - |

Table 2: Comparison of Leaving Certificate students' performance

| Class of 2012 booklet | Item | $\begin{aligned} & \text { Class of } \\ & 2013 \\ & \text { booklet } \end{aligned}$ | Item | Syllabus area assessed | Phase one students Class of 2012 |  | Phase one students Class of 2013 |  | Non-phase one students Class of 2012 |  | Non-phase one students Class of 2013 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Facility (\%) | \% <br> Omit | Facility <br> (\%) | $\%$ <br> Omit | Facility (\%) | $\%$ <br> Omit | Facility <br> (\%) | $\%$ |
| SPLC1 | 1 | LC1/2/5 | 1 | 1.2 | 61 | 2 | 67 | 0 | 62 | 2 | 60 | 2 |
|  | 2 |  | 2 | 1.2 | 67 | 3 | 67 | 1 | 62 | 3 | 60 | 3 |
|  | 3 |  | 3 | 1.4 | $\geq 1 \mathrm{~m}: 582 \mathrm{~m}: 28$ | 3 | $\geq 1 \mathrm{~m}: 532 \mathrm{~m}: 21$ | 4 | $\geq 1 \mathrm{~m}: 512 \mathrm{~m}: 21$ | 7 | $\geq 1 \mathrm{~m}: 472 \mathrm{~m}: 19$ | 7 |
|  | 4 |  | 4 | 1.3 | 70 | 2 | 66 | 3 | 61 | 5 | 59 | 4 |
|  | 5 |  | 5 | 1.6 | 66 | 3 | 63 | 2 | 56 | 7 | 57 | 5 |
|  | 6 |  | 6 | 1.4 | 1 | 2 | 1 | 0 | 1 | 4 | 1 | 2 |
|  | 7 a |  | 7 a | 1.6 | 80 | 2 | 84 | 1 | 75 | 6 | 78 | 3 |
|  | 7b |  | 7b |  | $\geq 1 \mathrm{~m}: 792 \mathrm{~m}: 42$ | 2 | $\geq 1 \mathrm{~m}: 82 \mathrm{2m}: 47$ | 0 | $\geq 1 \mathrm{~m}: 73$ 2m: 39 | 7 | $\geq 1 \mathrm{~m}: 762 \mathrm{~m}: 39$ | 2 |
|  | 8 |  | 8 | 1.4 | $\geq 1 \mathrm{~m}: 632 \mathrm{~m}: 58$ | 8 | $\geq 1 \mathrm{~m}: 662 \mathrm{~m}: 60$ | 3 | $\geq 1 \mathrm{~m}: 582 \mathrm{~m}: 49$ | 18 | $\geq 1 \mathrm{~m}: 582 \mathrm{~m}: 48$ | 11 |
|  | 9 |  | 9 | 1.4 | 49 | 17 | 58 | 6 | 38 | 25 | 46 | 20 |
| GTLC2 | 1 | LC1/2/5 | 10 | 2.1 | 59 | 4 | 62 | 4 | 48 | 3 | 48 | 7 |
|  | 2a |  | 11a | 2.1 | 77 | 5 | 75 | 3 | 68 | 6 | 61 | 14 |
|  | 2b |  | 11b |  | $\geq 1 \mathrm{~m}: 202 \mathrm{~m}: 18$ | 49 | $\geq 1 \mathrm{~m}: 202 \mathrm{~m}: 17$ | 42 | $\geq 1 \mathrm{~m}: 13 \mathrm{~mm}$ : 10 | 53 | 21m: 16 2m: 15 | 54 |
|  | 3 |  | 12 | 2.1 | 51 | 2 | 48 | 1 | 47 | 2 | 40 | 8 |
|  | 4 |  | 13 | 2.1 | 67 | 5 | 73 | 3 | 68 | 4 | 62 | 9 |
|  | 5 |  | 14 | 2.1 | 28 | 9 | 32 | 4 | 28 | 6 | 23 | 14 |
|  | 6 |  | 15 | 2.2 | 34 | 8 | 33 | 6 | 41 | 9 | 24 | 19 |
|  | 7 |  | 16 | 2.2 | 17 | 9 | 12 | 12 | 18 | 16 | 6 | 30 |
|  | 8 a |  | 17a | 2.3 | 31 | 19 | 28 | 22 | 25 | 19 | 18 | 32 |
|  | 8 b |  | 17b |  | 13 | 50 | 18 | 47 | 14 | 50 | 11 | 68 |
|  | 9 |  | 18 | 2.2 | $\geq 1 \mathrm{~m}: 302 \mathrm{~m}: 22$ | 31 | $\geq 1 \mathrm{~m}: 32 \mathrm{~mm}$ : 27 | 26 | $\geq 1 \mathrm{~m}: 362 \mathrm{~m}: 30$ | 32 | $\geq 1 \mathrm{~m}: 182 \mathrm{~m}: 14$ | 51 |
|  | 10a |  | 19a | 2.3 | 12 | 27 | 19 | 33 | 18 | 29 | 17 | 41 |
|  | 10b |  | 19b |  | $\geq 1 \mathrm{~m}: 112 \mathrm{~m}: 1$ | 70 | $\geq 1 \mathrm{~m}: 12 \mathrm{~mm} 0$ | 75 | 21m: 13 2m: 0 | 70 | $\geq 1 \mathrm{~m}: 72 \mathrm{~m}: 0$ | 81 |
| NLC3 | 1 | LC3/4/5 | 1 | 3.4 | 82 | 5 | 71 | 1 | - | - | 69 | 4 |
|  | 2 |  | 2 | 3.1 | 29 | 13 | 23 | 15 | - | - | 17 | 21 |
|  | 3 |  | 3 | 3.4 | 42 | 3 | 50 | 1 | - | - | 38 | 3 |
|  | 4 |  | 4 | 3.4 | $\geq 1 \mathrm{~m}: 47 \mathrm{2m}$ : 14 | 2 | $\geq 1 \mathrm{~m}: 502 \mathrm{~m}: 24$ | 4 | - | - | $\geq 1 \mathrm{~m}: 482 \mathrm{~m}: 15$ | 3 |
|  | 5 |  | 5 | 3.5 | 71 | 4 | 77 | 1 | - | - | 62 | 3 |
|  | 6 |  | 6 | 3.1 | 35 | 6 | 40 | 4 | - | - | 32 | 7 |
|  | 7 |  | 7 | 3.1 | 18 | 14 | 17 | 17 | - | - | 12 | 16 |
|  | 8 a |  | 8 a | 3.1 | 59 | 7 | 68 | 1 | - | - | 61 | 5 |
|  | 8b |  | 8 b |  | $\geq 1 \mathrm{~m}: 362 \mathrm{~m}: 25$ | 24 | $\geq 1 \mathrm{~m}: 392 \mathrm{~m}: 30$ | 9 | - | - | $\geq 1 \mathrm{~m}: 302 \mathrm{~m}: 22$ | 17 |

Research into the impact of Project Maths on student achievement, learning and motivation

|  | $\begin{gathered} 9 \\ 10 \end{gathered}$ |  | $\begin{gathered} 9 \\ 10 \end{gathered}$ | $\begin{aligned} & 3.4 \\ & 3.1 \end{aligned}$ | $\begin{aligned} & 23 \\ & 14 \end{aligned}$ | $\begin{array}{r} 9 \\ 61 \end{array}$ | 23 0 | $\begin{gathered} 1 \\ 44 \end{gathered}$ | - | - | $\begin{gathered} 25 \\ 1 \end{gathered}$ | $\begin{gathered} 5 \\ 60 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ALC4 | 1a | LC3/4/5 | 11a | 4.1 | 82 | 2 | 86 | 2 |  |  | 81 | 6 |
|  | 1b |  | 11b |  | 25 | 12 | 35 | 8 | - | - | 21 | 18 |
|  | 2a |  | 12a | 4.1 | $\geq 1 \mathrm{~m}: 842 \mathrm{~m}: 76$ | 9 | 21m: 69 2m: 65 | 14 | - | - | $\geq 1 \mathrm{~m}: 582 \mathrm{~m}: 53$ | 28 |
|  | 2b |  | 12b |  | $\geq 1 \mathrm{~m}: 472 \mathrm{~m}: 34$ | 17 | $\geq 1 \mathrm{~m}: 512 \mathrm{~m}: 23$ | 20 |  | - | $\geq 1 \mathrm{~m}: 392 \mathrm{~m}: 17$ | 38 |
|  | 3 |  | 13 | 4.4 | 13 | 10 | 10 | 16 | - | - | 14 | 19 |
|  | 4 |  | 14 | 4.3 | 26 | 10 | 28 | 18 | - | - | 12 | 28 |
|  | 5 |  | 15 | 4.3 | 8 | 19 | 6 | 19 | - | - | 2 | 38 |
|  | 6 |  | 16 | 4.1 | 16 | 11 | 12 | 22 | - | - | 11 | 34 |
|  | 7 |  | 17 | 4.2 | 5 | 38 | 7 | 43 | - | - | 2 | 64 |
| FLC5 | 1 | LC1/2/5 | 20/18 | 5.1 | 34 | 3 | 33 | 13 | - | - | - | - |
|  | 2 | \& | 21/19 | 5.2 | 9 | 12 | 7 | 22 | - | - | - | - |
|  | 3 | LC3/4/5 | 22/20 | 5.1 | 77 | 3 | 56 | 15 | - | - | - | - |
|  | 4a |  | 23a / 21a | 5.2 | 2 | 34 | 2 | 52 | - | - | - | - |
|  | 4b |  | 23a / 21b |  | 1 | 46 | 0 | 59 | - | - | - | - |
|  | 5 |  | 24 / 22 | 5.2 | 3 | 33 | 3 | 59 | - | - | - | - |
|  | 6 |  | 25 / 23 | 5.1 | 21 | 10 | 17 | 30 | - | - | - | - |
|  | 7a |  | 26a / 24a | 5.2 | 15 | 35 | 5 | 60 | - | - | - | - |
|  | 7b |  | 26a / 24b |  | 2 | 46 | 1 | 71 | - | - | - | - |
|  | 8 |  | $27 / 25$ | 5.2 | 28 | 17 | 20 | 43 | - | - | - | - |
|  | 9 |  | $28 / 26$ | 5.2 | 24 | 16 | 14 | 44 | - | - | - | - |

## Strand 1: Statistics and Probability

Strand 1, Statistics and Probability, was one of the first to be introduced in schools and is therefore well established. All students involved in the research had followed Strand 1 of the revised curriculum.

Junior and Leaving Certificate students were assessed against a number of items relating to Strand 1 of the revised mathematics syllabuses. These included: 'concepts of probability' (1.2), 'outcomes of random processes' (1.3), 'statistical reasoning with an aim to becoming a statistically aware consumer' (1.4), and 'representing data graphically and numerically' (1.6). Junior Certificate students were also assessed on 'analysing, interpreting and drawing conclusions from data' (1.7).

## Junior Certificate

A total of 211 students from phase one schools and 795 students from non-phase one schools completed the items assessing Strand 1 of the revised mathematics syllabuses. Their performance is shown in Table 3.

In this and the following tables, the proportion of students who achieved just one mark, and the proportion who received full credit, for all two mark items is presented. For each item, the tables also give the broad syllabus area assessed and a summary of the task.

The performance of the class of 2013 is broadly similar to the class of 2012. Items 2 and 5 remain the easiest within this strand and none of the items have proven to be overly difficult (facility <20 per cent). Students continue to show a strong performance on items assessing this strand.

Table 3: Junior Certificate students' performance in items relating to Strand 1 of the revised mathematics syllabuses

| JC1/2/5 <br> Item | Syllabus area | Item summary | Phase one students |  | Non-phase one students |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} 1 \\ \text { mark } \\ (\%) \end{gathered}$ | $\begin{gathered} 2 \\ \text { marks } \\ (\%) \end{gathered}$ | $\begin{gathered} 1 \\ \text { mark } \\ (\%) \end{gathered}$ | $\begin{gathered} 2 \\ \text { marks } \\ (\%) \end{gathered}$ |
| 1 | Probability | Estimate and compare probabilities (numbered tickets) | 89 |  | 86 |  |
| 2 | Interpreting data | Interpret data (bar chart) | 98 |  | 93 |  |
| 3 | Representing data | Transform data (pie chart to bar chart) | 6 | 65 | 5 | 54 |
| 4 | Probability | Estimate probability (coloured marbles) | 84 |  | 78 |  |
| 5 | Representing data | Match tabulated data to corresponding line graph | 97 |  | 90 |  |
| 6a | Interpreting data | Use bus timetables to plan travel according to time constraints | 23 | 42 | 20 | 32 |
| 6b | Interpreting data | Use bus timetables to plan travel according to time constraints | 25 | 29 | 26 | 20 |
| 6c | Interpreting data | Draw conclusions from tabulated data | 60 |  | 44 |  |
| 7a | Representing data | Find and compare means from tabulated data | 69 |  | 53 |  |
| 7b | Interpreting data | Draw conclusions from data in scatter graph | 30 | 47 | 36 | 32 |
| 8 | Probability | Find number of coloured beads (from probability of selection) | 68 |  | 65 |  |
| 9 | Statistical reasoning | Understand how data points relate to their average | 23 |  | 18 |  |
| 10 | Probability | Estimate size of sectors on coloured spinner (from experimental data) | 70 |  | 54 |  |
| 11 | Statistical reasoning | Recognise that a graph is potentially misleading | 36 | 20 | 24 | 17 |

## Leaving Certificate

A total of 203 students from phase one schools and 393 students from non-phase one schools completed the items assessing Strand 1 of the revised syllabuses. Their performance is shown in Table 4. The table shows that students are performing well on all but item 6. The performance of the class of 2013 is broadly similar to the class of 2012.

Table 4: Leaving Certificate students' performance in items relating to Strand 1 of the revised mathematics syllabuses

| $\begin{gathered} \text { LC1/2/5 } \\ \text { Item } \end{gathered}$ | Syllabus area | Item summary | Phase one students |  | Non-phase one students |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{array}{\|c\|} \hline 1 \\ \text { mark } \\ (\%) \end{array}$ | 2 <br> marks <br> $(\%)$ <br> (\%) | $\begin{gathered} 1 \\ \text { mark } \\ (\%) \end{gathered}$ |  |
| 1 | Probability | Estimate probability of two independent events | 67 |  | 60 |  |
| 2 | Probability | Interpret long-term probability of earthquake | 67 |  | 60 |  |
| 3 | Statistical Reasoning | Recognise graph as potentially misleading | 33 | 21 | 28 | 19 |
| 4 | Probability | Estimate size of sectors on coloured spinner (from experimental data) | 66 |  | 59 |  |
| 5 | Representing Data | Understand why bar graph is unsuitable for given data | 63 |  | 57 |  |
| 6 | Statistical reasoning | Understand how data points relate to their average | 1 |  | 1 |  |
| 7a | Representing Data | Calculate and compare means from tabulated data | 84 |  | 78 |  |
| 7b | Representing Data | Draw conclusions from data in graphical form | 34 | 47 | 37 | 39 |
| 8 | Statistical reasoning | Compare quality of polls based on sampling methods | 5 | 60 | 10 | 48 |
| 9 | Statistical reasoning | Use graph to make mathematical argument | 58 |  | 46 |  |

## Strand 2: Geometry and Trigonometry

Strand 2, Geometry and Trigonometry, was one of the first strands to be introduced in schools and is therefore well established. All students involved in this research had experience of this strand of the revised curriculum.

Junior and Leaving Certificate students were assessed against a number of items relating to Strand 2 of the revised mathematics syllabuses. For Leaving Certificate students, these included 'synthetic geometry' (2.1), 'co-ordinate geometry' (2.2), and 'trigonometry' (2.3). For Junior Certificate students, these included: 'synthetic geometry' (2.1), 'transformation geometry' (2.2) and 'co-ordinate geometry' (2.3).

## Junior Certificate

A total of 211 students from phase one schools and 795 students from non-phase one schools completed the items assessing Strand 2 of the revised syllabuses. Their performance is shown in Table 5. The table shows that none of the items are particularly easy or difficult. Students' performance in the items is similar to the class of 2012.

Table 5: Junior Certificate students' performance in items relating to Strand 2 of the revised mathematics syllabuses

| JC1/2/5 Item | Syllabus area | Item summary | Phase one students |  | Non-phase one students |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} 1 \\ \text { mark } \\ (\%) \\ \hline \end{gathered}$ |  | $\begin{gathered} 1 \\ \text { mark } \\ (\%) \end{gathered}$ |  |
| 12 | Coordinate geometry | Identify a point given coordinates | 82 |  | 73 |  |
| 13 | Synthetic geometry | Find size of angle (using congruent triangles \& sum to 180) | 55 |  | 43 |  |
| 14 | Synthetic geometry | Find size of angle formed by diagonals of hexagon | 67 |  | 58 |  |
| 15 | Synthetic geometry | Find size of angle (using straight angle) | 71 |  | 62 |  |
| 16 | Synthetic geometry | Find size of angle (using vertically opposite angles \& isosceles triangle) | 28 |  | 34 |  |
| 17 | Transformation geometry | Rotate 3-D shape | 82 |  | 74 |  |
| 18 | Coordinate geometry | Identify coordinates of top vertex of isosceles triangle | 64 |  | 57 |  |
| 19 | Synthetic geometry | Construct obtuse \& acute angles | 54 |  | 38 |  |
| 20 | Synthetic geometry | Find size of angle (using bisectors \& straight angle) | 36 |  | 26 |  |
| 21 | Synthetic geometry | Find size of angles (using alternate angles or exterior angle) | 55 |  | 44 |  |

## Leaving Certificate

A total of 203 students from phase one schools and 393 students from non-phase one schools completed the items assessing Strand 2 of the revised syllabuses. Their performance is shown in Table 6. In general, performance is similar to the class of 2012 with students finding the same items (2b, 7, 8b, 9, 10a and 10b) particularly difficult. Additionally, students from non-phase one schools achieved low scores on item 8a. The item was also quite difficult for the class of 2012 and it is likely that the further reduction in facility is due to the differences in the time of year that the trial took place (the class of 2013 had less schooling than the class of 2012).

Table 6: Leaving Certificate students' performance in items relating to Strand 2 of the revised mathematics syllabuses

| LC1/2/5 Item | Syllabus area | Item summary | Phase one students |  | Non-phase one students |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | marks <br> (\%) | 1 mark (\%) | marks <br> (\%) |
| 1 | Synthetic Geometry | Match complex description of shapes to diagram | 62 |  | 48 |  |
| 2a | Synthetic Geometry | Size of angle formed by diagonals of hexagon | 75 |  | 61 |  |
| 2 b |  | Show working for 2a | 2 | 17 | 1 | 15 |
| 3 | Synthetic Geometry | Size of angle (sum to 180; vertically opposite angles) | 48 |  | 40 |  |
| 4 | Synthetic Geometry | Size of angles (alternate angles; exterior angle theorem) | 73 |  | 62 |  |
| 5 | Synthetic Geometry | Length of median of isosceles triangle | 32 |  | 23 |  |
| 6 | Coordinate Geometry | Sum of slopes of equilateral triangle | 33 |  | 24 |  |
| 7 | Coordinate Geometry | Investigate whether two lines are parallel | 12 |  | 6 |  |
| 8a | Trigonometry | Solve for $x$ given value of $\sin 2 x$ | 28 |  | 18 |  |
| 8 b |  | Show working for 8a | 18 |  | 11 |  |
| 9 | Coordinate Geometry | Prove two lines intersect at a common midpoint (diagonals of parallelogram) | 4 | 27 | 4 | 14 |
| 10a | Trigonometry | Find the length of a chord of a circle (width of window in semi-circular room) | 19 |  | 17 |  |
| 10b |  | Show working for 10a | 12 | 0 | 7 | 0 |

## Strand 3: Number

All students in phase one schools had studied Strand 3 (Number). In non-phase one schools, just Leaving Certificate students had studied this strand.

Junior and Leaving Certificate students were assessed against a number of items relating to Strand 3 of the revised mathematics syllabuses. For Leaving Certificate students, these included: 'number systems' (3.1), 'length, area and volume (3.4)', and 'synthesis and problem solving skills' (3.5). For Junior Certificate students, these also included: 'indices' (3.2), 'applied arithmetic' (3.3) and 'applied measure' (3.4).

## Junior Certificate

A total of 210 students from phase one schools completed the items assessing Strand 3 (Number). Performance in Strand 3 is shown in Table 7 below. The broad pattern of performance is similar to that of the class of 2012 with items 2 and 9 proving to be very easy for students and items 8 and 11 being particularly difficult.

Table 7: Junior Certificate students' performance in items relating to Strand 3 of the revised mathematics syllabuses

| JC3/4/5 <br> Item | Syllabus area | Item summary | Phase one <br> students |  |
| :--- | :--- | :--- | :---: | :---: |
| 1 <br> mark <br> $(\%)$ | 2 <br> marks <br> $(\%)$ |  |  |  |
| 1 | Number: <br> percentages | Estimate percentage of four digit number | 81 |  |
| 2 | Scientific <br> notation | Evaluate number written in scientific notation | 95 |  |
| 3 | Number: ratio | Find number of boys in a class given boy:girl ratio | 67 |  |
| 4 | Number: <br> fractions | Add and subtract simple fractions | 49 |  |
| 5 | Applied <br> measure | Find distance travelled in given time | 88 |  |
| 6 | Number: <br> operations | Perform division with negative number | 80 |  |
| 7 | Number: prime <br> factors | Recognise prime factors of four digit number | 63 |  |
| 8 | Applied <br> measure | Compare value for money of two pizzas based on surface <br> area | 2 |  |
| 9 | Applied <br> measure | Interpret graph (speed of racing car on track) | 95 |  |
| $10 a$ | Applied <br> arithmetic | Currency conversion with given exchange rate | 90 |  |
| $10 b$ | Applied <br> arithmetic | Explain benefit of lower exchange rate | 40 |  |
| 11 | Number: <br> proportion | Understand proportional relationship (cost of apartment <br> based on floor area) | 8 |  |

[^5]
## Leaving Certificate

A total of 210 students from phase one schools and 395 students from non-phase one schools completed the items assessing Strand 3 (Number). Performance in Strand 3 is shown in Table 8. Many of the items performed differently, some were easier and some were harder, compared with the class of 2012, but the overall scores of all the items in this section are broadly similar and items $7,8 \mathrm{~b}$ and 10 remain the hardest in this strand. Only phase one students completed these items in Spring 2012, but non-phase students in the class of 2013, who took the items in Autumn 2012 generally found these items harder than the phase one students.

Table 8: Leaving Certificate students' performance in items relating to Strand 3 of the revised mathematics syllabuses

| Item | Syllabus area | Item summary | Phase one |  | Non-phase one |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 <br> mark <br> (\%) | 2 marks <br> (\%) | 1 mark <br> (\%) | 2 marks (\%) |
| 1 | Area | Find area of square floor | 71 |  | 69 |  |
| 2 | Percentages | Design system of coins under set conditions | 23 |  | 17 |  |
| 3 | Area | Compare surface area of regular and irregular shapes | 50 |  | 38 |  |
| 4 | Length | Estimate perimeter of regular shapes | 27 | 24 | 34 | 15 |
| 5 | Problemsolving | Find how many bookshelves can be made from constituent parts available | 77 |  | 62 |  |
| 6 | Operations | Find thickness of paper folded multiple times | 40 |  | 32 |  |
| 7 | Geometric series | Find sum of infinite geometric series | 17 |  | 12 |  |
| 8a | Patterns | Recognise pattern present in flashes of lighthouse | 68 |  | 61 |  |
| 8b | Patterns | Construct pattern of lighthouse flashes under set conditions | 9 | 30 | 8 | 22 |
| 9 | Area | Estimate how many people fit in a field of given dimensions | 23 |  | 25 |  |
| 10 | Induction | State the steps required for proof by induction | 0 |  | 1 |  |

## Strand 4: Algebra

All students in phase one schools had studied Strand 4 (Algebra). In non-phase one schools, just Leaving Certificate students had studied this strand.

Junior and Leaving Certificate students were assessed against a number of items relating to Strand 4 of the revised mathematics syllabuses. For Leaving Certificate students, these included 'expressions' (4.1), 'solving equations' (4.2), 'inequalities' (4.3), and 'complex numbers' (4.4). For Junior Certificate students, these included: 'representing situations with tables, diagrams and graphs' (4.2), 'finding formulae' (4.3), 'examining algebraic relationships' (4.4), 'relations without formulae' (4.5), 'expressions' (4.6) and 'equations and inequalities' (4.7).

## Junior Certificate

A total of 210 students from phase one schools completed the items assessing Strand 4 (Algebra). Performance in Strand 4 is shown in Table 9. The broad pattern of performance is similar to the class of 2012 with items 12, 13c and 14 continuing to be particularly difficult with facilities less than 25 per cent. The first interim report (November 2012) noted that students tended to find items relating to this strand of the syllabus more difficult than their international counterparts, and this pattern holds true.

Table 9: Junior Certificate students' performance in items relating to Strand 4 of the revised mathematics syllabuses

| JC3/4/5 <br> Item | Syllabus area | Item summary | Phase one students ${ }^{2}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} 1 \\ \text { mark } \end{gathered}$ (\%) |  |
| 12 | Representing situations | Use numerical methods to extend pattern of matches | 11 | 19 |
| 13a | Representing situations | Complete table of number of trees by expanding systematic pattern | 12 | 63 |
| 13b | Equations | Solve equation with quadratic term | 26 |  |
| 13c | Algebraic relationships | Understand that squared terms increase more quickly than linear terms | 18 | 8 |
| 14 | Graphical relations | Interpret graph of motion (moving walkway) | 19 |  |
| 15 | Inequalities | Solve linear inequality | 37 |  |
| 16 | Expressions | Simplify linear expression with two variables | 73 |  |
| 17 | Finding formulae | Express unknown length in terms of two variables | 63 |  |
| 18 | Expressions | Evaluate expression with two variables | 53 |  |
| 19 | Equations | Solve linear equation (shipping charges) | 53 |  |
| 20 | Algebraic relationships | Determine which point is on a line (given equation) | 30 |  |
| 21 | Finding formulae | Derive formula for linear relation between two variables | 45 |  |

## Leaving Certificate

A total of 210 students from phase one schools and 395 students from non-phase one schools completed the items assessing Strand 4 (Algebra). Performance in Strand 4 is shown in Table 10 below. The performance follows the patterns set out in the class of 2012 with items $1 \mathrm{~b}, 2 \mathrm{a}$ and 2 b being the most difficult. Only phase one students completed these items in the class of 2012.

[^6]Table 10: Leaving Certificate students' performance in items relating to Strand 4 of the revised mathematics syllabuses

| Item | Syllabus area | Item summary | Phase one students |  | Non-phase one students |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 mark (\%) | 2 marks <br> (\%) | 1 <br> mark <br> (\%) | 2 marks <br> (\%) |
| 1a | Expressions | Evaluate expression with four variables | 86 |  | 81 |  |
| 1b | Expressions | Construct expression to meet specified conditions | 35 |  | 21 |  |
| 2a | Equations | Solve equation with two variables given value of one | 4 | 65 | 5 | 53 |
| 2 b | Equations | Solve equation with two variables given value of one | 29 | 23 | 22 | 17 |
| 3 | Complex numbers | Divide real number by complex number (using complex conjugate) | 10 |  | 14 |  |
| 4 | Inequalities | Solve inequality (quadratic) | 28 |  | 12 |  |
| 5 | Inequalities | Solve inequality (algebraic fraction) | 6 |  | 2 |  |
| 6 | Expressions | Find minimum value of composite function | 12 |  | 11 |  |
| 7 | Equations | Form quadratic function given points of intersection with both axes | 7 |  | 2 |  |

## Strand 5: Functions

All students in phase one schools had studied Strand 5 (Functions). Phase one students had only covered this topic in the class of 2013.

Junior and Leaving Certificate students were assessed against a number of items relating to Strand 5 of the revised mathematics syllabuses. For Leaving Certificate students, these included: 'functions' (5.1) and 'calculus' (5.2) only. For Junior Certificate students, these included: 'graphing functions' (5.2).

## Junior Certificate

A total of 421 students from phase one schools completed the two items assessing Strand 5 (Functions). Performance in Strand 5 is shown in Table 11. This strand was not assessed in the class of 2012 trial and the items are new additions to both of the Junior Certificate booklets. From the pool of international items from which the indicator item booklets were constructed, only two items of appropriate difficulty and mathematical content were identified. This limits the conclusions that can be drawn regarding the performance of
students within strand 5 . However, both of the items have reasonable facilities (between 20 and 90 per cent) showing that neither item is particularly easy or difficult. Item 22 was also trialled with the Leaving Certificate students. Surprisingly, the older students have not performed better. It is not clear why this should be, but it supports the finding from the attitude survey that Leaving Certificate students are significantly more likely than Junior Certificate students to state that they find representing relationships 'a little difficult' or 'difficult'. It is possible that the greater confidence of the Junior Certificate students who have less association with previous syllabuses is having an effect. As the item was sourced from the PISA survey, no comparisons can be made to international data.

Table 11: Junior Certificate students' performance in items relating to Strand 5 of the revised mathematics syllabuses

| JC3/4/5 <br>  <br> JC1/2/5 <br> Item | Syllabus area | Item summary | Phase one JC <br> students ${ }^{3}$ <br> 1 mark <br> $(\%)$ | Phase one <br> LC students <br> 1 mark <br> $(\%)$ |
| :--- | :--- | :--- | :---: | :---: |
| 22 | Graphing functions | Identify the graphical <br> representation of a <br> swing's movement over <br> time | 56 | 56 |
| 23 | Graphing functions | Representing a function in <br> a graphical form | 23 | - |

## Leaving Certificate

A total of 413 students from phase one schools completed booklets containing the items assessing Strand 5 (Functions). Performance in Strand 5 is shown in Table 12 below. The first interim report (November 2012) notes that the items assessing calculus were found to be particularly difficult by the class of 2012, and this remains so.

As calculus is not covered in the Foundation Level course, and some elements such as integration are only covered at the Higher Level, it is of interest to look at the item facilities of the different student level groups. Table 12 also details the facilities of the Ordinary Level and Higher Level students on all of the Strand 5 items. The Higher Level students will be completing a more advanced end of course test paper and therefore can be anticipated to score more highly on this trial paper than their peers. However, on items 6, 8 and 9, the Ordinary Level students achieve slightly higher facilities. Of these, item 6 assesses functions while items 8 and 9 assess calculus. A similar comparison carried out on the class of 2012 did not show this unusual pattern for items 8 and 9 (item 6 was not analysed by student level). It is not clear why the Ordinary Level students are performing better than their Higher Level counterparts.

The omission rates of the Stand 5 items are high. This may have been caused by a combination of factors: the high demand of the items, the open response formats of several of the items and the positioning of the items at the end of both of the Leaving Certificate

[^7]indicator item booklets. The omission rates for the Strand 5 items were also high in the class of 2012.

Table 12: Leaving Certificate students' performance in items relating to Strand 5 (Functions)

| Item | Syllabus area | Item summary | $\begin{aligned} & \text { Phase } \\ & \text { one } \\ & \text { students } \end{aligned}$ | Ordinary Ievel <br> students <br> ( $\mathrm{N}=232$ ) | Higher level students ( $\mathrm{N}=176$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} 1 \text { mark }^{4} \\ (\%) \end{gathered}$ | 1 mark (\%) | 1 mark (\%) |
| 1 | Functions | Match story of phenomenon to graph (rising level of water in tank) | 33 | 25 | 44 |
| 2 | Calculus | Apply differentiation to find stopping distance of car | 7 | 4 | 11 |
| 3 | Functions | Match story of phenomenon to graph (height of feet above ground while swinging) | 56 | 53 | 60 |
| 4a | Calculus | Find where function of order four cuts $x$ axis | 2 | 0 | 4 |
| 4b | Calculus | Find maxima and minima of function (differentiate) | 0 | 0 | 1 |
| 5 | Calculus | Link slope of trigonometric function to its derivative | 3 | 0 | 7 |
| 6 | Functions | Find number of integer coordinates on graph of fractional function | 17 | 21 | 13 |
| 7a | Calculus | Find values where function is not continuous (given graph) | 5 | 2 | 9 |
| 7b | Calculus | Find values where function is not differentiable (given graph) | 1 | 0 | 3 |
| 8 | Calculus | Find value of definite integral (given area between function and $x$-axis) | 20 | 24 | 15 |
| 9 | Calculus | Integrate exponential function | 14 | 15 | 13 |

[^8]
# NFER provides evidence for excellence through its independence and insights, the breadth of its work, its connections, and a focus on outcomes. 

- independent
- insights
- breadth
- connections


[^0]:    Due to rounding, percentages may not sum to 100.

[^1]:    Due to rounding, percentages may not sum to 100 .

[^2]:    Due to rounding, percentages may not sum to 100 .

[^3]:    Source: NFER student survey, Autumn 2012

[^4]:    Due to rounding, percentages may not sum to 100.

[^5]:    ${ }^{1}$ Non-phase one students are not included in this table as they did not complete booklet JC 3/4/5.

[^6]:    ${ }^{2}$ Non-phase one students are not included in this table as they did not complete booklet JC 3/4/5.

[^7]:    ${ }^{3}$ Non-phase one students are not included in this table as they did not complete the functions items.

[^8]:    ${ }^{4}$ Non-phase one students are not included in this table as they did not complete the functions items.

