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1 The future is random – the ‘why’
and ‘when’ of randomised 
controlled trials

In one of the most tragic episodes in modern medical history, a seemingly
minor change in the care of premature infants resulted in the blinding of
about 10,000 babies between 1942 and 1954. The 12-year epidemic of
retinopathy of prematurity was curbed only after a multicentre
randomised trial demonstrated that the liberal use of supplemental oxygen
had been the culprit. (Silverman, 1997).

Although the penalty for failure and the reward for success are less
extreme in educational research, the pattern of  events in this example
shows strong parallels with how educational interventions are evaluated.
An exciting new educational policy is conceived and enthusiastically
accepted. There is belated recognition that it might be necessary to show
that it actually works. Evaluation then takes place long after the untested
intervention is already in wide use. This approach shows a flagrant
disregard for any kind of cost-benefit analysis of the intervention or the
potential harm done to the individuals concerned. 

For a researcher with control over an intervention, the above situation
should not arise. The medical example starkly shows how rigorous
evaluation put a stop to a detrimental treatment, but not necessarily that
a randomised trial was needed. And yet randomised controlled trials
(RCTs) are seen as the gold standard for evidence-based educational
practice. In this introduction, I want to look in more depth at some of
the reasons this is the case, and explain some of the statistical and epis-
temological power associated with RCTs. This is not to say that RCTs
will be the best option in every case, however, and it is important to have
a look at some circumstances where other approaches to research will
offer advantages (Styles, 2009).         
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The evaluation problem and how 
randomisation solves it

For the purposes of  this guide, we will accept the following conditions.

• There is a specific population of individuals at whom the intervention
is aimed. 

• Any improvements in the educational outcomes of  the target
individuals as a result of the intervention are measurable.

• The evaluation needs to discern the effect of  the intervention on the
outcome measure of interest.

Although questioned in academic debate, these conditions do represent
a common scenario for researchers evaluating educational interventions.

The fundamental problem which the RCT attempts to solve is known as
the evaluation problem. The ideal method of  evaluation, were this
possible, would be to compare outcomes for a set of individuals who has
received the treatment with the outcomes for the same set of individuals,
who had (somehow, magically) also not received the treatment.
Obviously this would not be possible. Our next best alternative is to
compare two different groups ensuring that they are equivalent in terms
of  any influential factors by randomising allocation of  individuals to
treatment or control between the groups. So, for example, if  height is a
key factor, we would expect that the mean height of  the groups will be
close enough that this factor cancels out. This logic applies to factors we
know make a difference to outcomes and also those that we are unaware
of. This strategy enables us to treat the groups as equivalent, provided
the sample is large enough. It also enables a reasonable estimate of
treatment effect to be determined.

Once we embark on selecting groups in any other way, the comparison is
vulnerable to selection bias, meaning the bias that might come out of the
way we have divided people up. Results have to be accompanied with a
warning that selection bias may be present. It is difficult to say how
significant this bias is since it may cover both known and unknown
factors. Selection bias shows up as the difference in outcomes resulting

A guide to running randomised controlled trials for educational researchers2



from the way in which groups were selected, rather than any effect of the
intervention. 

It can be helpful to view the evaluation problem and to explain the
nature of bias using mathematical notation. This approach is adopted by
Heckman et al. (1997). The measured outcome of  an evaluation
observed for an individual, Y, is defined as:

Y = DY1 + (1 – D)Y0.

Where D is the experimental condition and D = 1 if  the person receives
treatment and D = 0 if  they do not. Y1 and Y0 are the outcomes in
conditions 1 and 0 respectively. The gain from participating in the
programme is ∅ = Y1 – Y0. The evaluation problem can be restated as
the problem that we cannot simultaneously observe Y1 and Y0 for the
same person.

To work out the effect of  the intervention, in a simple formulation, we
can subtract the mean outcome among non-participants from the mean
outcome of participants (Heckman and Smith, 1995). This leads to the
equation (where E means ‘the expected value of’, or mean; and | means
‘given’):

E(∅) = E (Y1|d = 1)–E(Y0|d = 0)

However, this way of expressing the problem does not take selection bias
into account. Selection bias arises when one group differs from the the
other in some important way: for example, the treatment could be given to
those that appeared to need it most. The researcher could attempt to cut
down on this by matching the groups on characteristics thought to be
important. However, matching on factors you can measure leaves open the
possibility that differences still remain on factors you have not measured. If
people are put into treatment and non-treatment groups using a process
that is not random, even one that relies on equal distribution of the visible
factors that are suspected to be important for the experiment, then selection
bias will exist. Of even greater concern is the fact that we will not know how
much of it there is, and hence the simple subtraction of mean non-
participant outcome from mean participant outcome will not provide a
causal conclusion. 
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In any experiment, some people agree to be randomly allocated to either
receiving or not receiving the treatment, while others are not prepared to be
randomly allocated to a group. It is easy to see why somebody suffering a
serious illness might wish to be certain that they would receive an experi-
mental treatment rather than run the 50 per cent risk of not receiving it.
However, the treatment will often not be available outside the trial. Since we
do not know whether the treatment is helpful, harmful or makes no
difference, denial of the treatment through randomisation is an ethically
neutral scenario. 

The group of people who agree to random allocation are designated D*,
and they are divided between those who get the treatment (R=1) and those
who do not (R=0). If the treatment to be tested is already widely available,
it may be considered ethically unacceptable to deny treatment to people
who refuse random allocation. A group of people who get the treatment
but refused random allocation cannot be taken into account when
measuring the outcomes. 

Randomisation of the D* participants removes the problem of selection
bias because random allocation to the R=1 group or the R=0 group should
produce a situation where the two groups have very similar average
‘amounts’ of all the factors that could affect the outcomes. It is important
to note that this applies both to visible factors, including those that are
likely to be relevant to the experiment, and invisible factors as well, which
could also be relevant.

Using mathematical notation, the estimate of the causal effect can be
summarised:

E(Y1 – Y0|d* = 1) = E(Y1|r = 1 and d* = 1) – E(Y0|r = 0 and d* = 1)

However, there is no free lunch in statistics. While this approach, the
heart of randomised trials, does deal effectively with selection bias, it
creates a new bias, known as randomisation bias. This occurs because
only some people agree to be part of the randomised D* group, and
this agreement is not random. That is, there could be certain shared
characteristics of the people who decline to take part, and this cannot
be known. So randomisation is really randomisation within a self-
selecting group. Randomisation bias and other methodological
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Objection Response

Randomisation is unethical. If we do not know whether the intervention works or is
even detrimental to outcomes, we are in an ethically
neutral scenario when randomising. If we know it works
(for example, through the use of previous randomised
trials and a meta-analysis) then no evaluation is
necessary, and we should not be randomising. In
educational research, we rarely know something works in
advance. Contrast randomisation with the cost (both
monetary and educationally) of rolling out an untested
intervention.

Participants will think
randomisation is unethical.

This is a genuine problem and can reduce the
generalisability of results if those agreeing to be
randomised do not form a representative sample. The
set-up of a trial should incorporate discussions with those
who will be running it regarding the principles behind
randomisation. If participants understand why they are
being randomised they are more likely to take part.

Limited generalisability. The critics of the generalisability of RCT methods need to
ask themselves: is it better to have the 'right' answer
among a relatively narrow group of participants or the
'wrong' answer amongst everyone (Torgerson and
Torgerson, 2008)?

problems associated with RCTs in educational research are considered
by Styles (2009).

Common objections to RCTs

The passing of the US Education Sciences Reform Act of 2002 provoked
a renaissance of scientifically-based educational research in the United
States. Resistance to the use of RCTs in the UK is discussed by Oakley
(2006), and objections to the use of  randomised trials in educational
research are well debated (Cook, 2002; Cook and Payne, 2002). Table 1.1
suggests responses to some of the common objections to using RCTs in
educational research. 

Table 1.1 Responses to objections raised
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Table 1.1 Responses to objections raised (continued)
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Objection Response

We cannot practice blinding
(see Chapter 2) in
educational research trials.

In a drug trial, patients, doctors and researchers can be
made unaware of what treatment patients are receiving
(a double-blind placebo trial). In educational research,
this is rarely possible since the intervention is clearly
visible to all concerned. We are, however, often able to
blind those involved in the measurement of outcomes.
The lack of blinding is a problem for educational research
trials due to the propensity for intervention group
participants to ‘try harder’ (known as the Hawthorne
Effect). However, other evaluation methods will rarely
improve on this since they will also not operate blinding.  

The interaction between
pupils and their education is
too complex for a simple
experiment.

This can actually be considered as an argument for
running an RCT. Since the unknown factors that are
balanced out through randomisation are so prevalent in
educational research, any non-experimental
methodology will be subject to selection bias. 

It does not tell us how the
intervention works.

True. It tells us whether an intervention has worked. This
is a good argument for qualitative work happening in
parallel with any trial that also seeks to clarify how the
intervention is causing any measured effect. If we are still
in the dark, does it really matter if we know it works?

Standard intervention
implementation is assumed.

The randomised trial is useful in assessing the
effectiveness of an intervention as if it were used for real.
If there is poor fidelity of implementation in the trial, the
same is likely to happen if used for real. The results,
therefore, necessarily reflect how the programme was
implemented. In fact, the intervention could be
administered with greater fidelity than for real due to the
Hawthorne Effect. This should be borne in mind when
interpreting results. 

The complex interplay of
systems and structures within
education means that large-
scale policy changes are
difficult to trial with an RCT.

Take the introduction of a new examination system, for
example. This requires the complex interplay of pupils,
teachers, schools, markers, funding streams and
examination boards. It is unlikely, for practical reasons,
that the intervention could be rarefied sufficiently for a
cluster-randomised trial at school level. Instead, some
kind of observational study (Styles, 2009) could be used
but would not demonstrate causality. An attempt should
be made, even if simply conceptual, to harness the
intervention into a form that it is possible to trial. If a
randomised trial is impractical, then there is a genuine
case for an observational study.



When to use an RCT 

An RCT should be considered as the first choice to establish whether an
intervention works.

• It eliminates selection bias and can generate a causal conclusion. 

• It avoids potentially misleading results from non-experimental work
which has inadequately controlled for selection bias.

• It provides a quick and digestible conclusion of programme effective-
ness that avoids lengthy caveats.

• Its results can be incorporated into future meta-analysis.

One situation where an RCT seems genuinely inappropriate is the
evaluation of  policy changes that affect many parts of  the educational
system (see Table 1.1). Otherwise, random assignment is the best
mechanism for justifying causal conclusions. 

A huge problem for RCTs at a national level is the regular rolling out to
schools of initiatives which have not been properly trialled. Evaluation is
either a late afterthought or not considered important enough to delay
roll-out. Schemes that have suffered this fate include the School Fruit
and Vegetable Scheme and the National Literacy Strategy. The exposure
of children to educational harm when initiatives are not properly tested
is a very real risk (Oates, 2007). Researchers in control of  their small-
scale interventions are sufficiently insulated from the requirements of
politicians, and the demand for quick roll-outs of  interventions, not to
have to cut corners when evaluating. 

Reporting the results of an RCT 

Randomised trial reporting should follow the Consort Statement at
http://www.consort-statement.org/.
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2 Ed versus med: differences 
and similarities between 
educational and medical 
experiments 

It is a truism to say that the current configuration of any development is
heavily conditioned by its origins and history. Thus, for example, the
current shape of  the motorcycle is determined to a large extent by its
origins as a pedal bicycle with an engine attached and, supposedly, the
standard railway gauge comes from the wheelbase of Roman chariots. In
a comparable fashion, many of  the features of  how RCTs are used in
education and social science are conditioned by the their origins in
medical experimentation. This will be illustrated by three examples of
RCTs applied in medicine and social science.

In this chapter, we discuss and compare some of the aims and practical-
ities of experiments in the two areas, medicine and education. One of the
aims of this discussion is to argue that conventions, both practical and
ethical, need not be exactly the same in an educational setting as in a
medical experiment. 

Example 1: medical experiment on a new 
treatment for a disease 

A pharmaceutical company has produced a new drug, and small-scale
prior experiments suggest that it will represent an improvement on the
existing drugs for treating a serious and widespread disease. The
company propose an experimental trial, involving randomising between
patients in an experimental group: those who receive the new drug, and
a control group, who get the old one. 

There are standard legal guidelines for such trials, so the company asks
an ethics committee to scrutinise the details of the proposed experiment.
The ethics committee assesses the details of the trial, and requests a few
alterations to improve the study. These are taken on board and the trial
can start. 
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Patients presenting with the disease in question are asked if  they wish to
take part in a randomised experiment and, if  they accept, they are
randomly allocated to receive either the new drug or the old one. This
randomisation procedure is carried out by a specialist outside body to
ensure those involved in the experiment do not influence the randomisa-
tion procedure. The patients are not told whether they are in the ‘control’
or ‘experimental’ group, and neither are their carers. The appearance of
the pills in which the drug is taken is similar, so it cannot be used to
deduce which group the patients are in. Measurements of symptoms are
made at the beginning and end of the experiment: again, these are made
by staff  who do not know which group the patients are in. This process
of disguising the group membership is referred to as blinding.

If  the trial gives results that show the new drug is superior to other
chemicals already available on the market, then the company will
consider introducing it to replace or supplement the previous treatment. 

Example 2: teacher’s study of learning skills 
and pupil progress

A blend of reading the background literature and personal experience
convinces a teacher that the pupils in her school would perform better if they
were given formal tuition in study skills. Realistically enough, she considers
it will not be possible to teach one half of the class in one way, and the other
half in another. She is convincing enough to persuade her fellow teachers to
take part in a study, and it is agreed that three classes will be involved as an
experimental group, and three as a control group. 

She considers this is sufficiently within her normal realm of  decision
making as not to require any kind of formal consent from the pupils or
their parents. Standard internal examinations take place at the end of
every term, so the two sets of  examinations, a term apart, are taken as
the before and after measures. If  her experiment proves successful, in
that she considers the pupils’ performance has improved as result of the
new technique, she may adopt it for use in her own class. She may also
recommend its use to other teachers. 
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Example 3: government initiative on teaching
reading 
Some medium-scale academic studies suggest a new method of teaching
reading is superior to the old one. This new method hits the headlines
and is eagerly seized upon by the media and politicians. However, there
are a number of  potentially quite serious objections raised by the
academic research community. The government department responsible
for education decides it would be a good plan to carry out a study to
look into these. Research organisations bid for this work and a team is
appointed. A sample of  schools is drawn. The study team approaches
them, explains the study, and asks if  they would like to take part. Those
that agree are then randomised into two groups, one being expected to
administer the new technique, and the other, the old technique. It is not
feasible to give a treatment to only some pupils in a school, and potential
contamination (see below) is large, so the selected schools are some
distance apart and all pupils in the school or year are taught in the
appropriate way. If  the trial proves ‘successful’, it is likely that the new
method will be introduced more widely in schools.

Compare and contrast 
These scenarios are hypothetical, though representative of many studies
of their type. A closer look at these relatively simple examples shows a
number of important features and contrasts. 

Population involved

In the first example, the individuals involved are a relatively small
proportion of  the entire population, and a selected group having a
presenting problem, that is, a disease. In the second, the research
population is simply the school. In the third, the aim is to have the
studied schools as representative of  the whole population as possible. 

The medical development is attempting to deal with some kind of
serious problem and it is expected that the treatment will make a
substantial impact, for example, be a cure for malaria or tuberculosis. It
is also possible that the treatment could have a substantial negative
impact, for example, some of the first batches of polio vaccine actually
infected those inoculated with the disease. For teachers educating
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children, results are likely to be relatively smaller incremental changes in
performance, attitude or behaviour.

Ethics

Given the possibility of a medical intervention having major impacts, it
is particularly important to ‘get it right’. If  a treatment actually makes
an impact different from existing practice, then someone among those
involved is going to be disadvantaged. If  a new treatment is shown to be
very effective, then the control group is losing out by not experiencing it.
Conversely, if  the treatment is a disaster, the experimental group is dis-
advantaged. Also, if  it is successful, the sooner it can be available more
widely the better. It is important that all concerned are aware of  the
possible potential benefits and problems, and for this reason the role of
the ethics committee is central. 

The necessity of an ethics committee in small-scale classroom research,
as outlined above, is less evident. Even in these days of  prescriptive
national assessment, and allegations of teaching to the test, a teacher has
a substantial degree of  freedom in determining what goes on in the
classroom. It is generally accepted that teaching style is a largely
personal quality, and the teacher, in this example, may feel that a change
with the impact of  teaching learning skills is something that she could
introduce on her own initiative without wider consultation. In this cir-
cumstance, the teacher might well argue that if  she could do this anyway
on her own initiative she should not have to consult an ethics committee
simply because she is carrying out research. 

This is a somewhat controversial aspect. Many experts would maintain
that an ethics group is a sine qua non for any type of human experimen-
tation, and it may be that this becomes necessary in the future. It will
certainly be advisable to do this when planning to publish results or as
part of a degree project. However, it is at least clear that the impetus for
this comes from the technique’s roots in medical experimentation.

Risk

This consideration is closely allied to the previous one, but sufficiently
different to merit separate consideration. There is likely to be an element
of risk in an experimental trial. Either the control group could be denied
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an effective treatment, or the experimental group could be exposed to an
untried or risky procedure. Further, if  the treatment is in fact effective,
those not in the trial may not even have a chance of receiving it while the
trial is going on. So there is a tension here. 

On the one hand, the study needs to minimise the risks that the subjects
are exposed to. This argues for a short study, involving a relatively small
number of people. On the other hand, the study has to be able to ensure
that it is possible to reach a conclusion with a sufficient degree of
certainty. If  the study is too small to reach a conclusion, then arguably
all the contributions will be essentially wasted. This argues for a large-
scale study. 

To balance these competing demands most efficiently it will be essential
that statisticians are fully involved in the design, both in the research
team and in the ethics committee. Similarly, a large-scale education trial
must be designed with a sample size sufficient to detect an important
effect if  one is there. In some situations a quite small effect may still be
worth pursuing, so quite a large sample would be required. 

The considerations of  the teacher researcher are rather different. Her
sample size is more or less fixed. However, it will still be necessary to
involve statistical advice to ensure that the proposed design will be strong
enough to be able to detect the size of effect that would be of interest. If
not, it may be necessary to expand the study to include more than one
school, for example.

Randomisation

If  those involved in the medical experiment are also involved in selecting
group membership it is possible that the two groups are different in
potentially important aspects. Subjects who are more voluble, or just
more desperate, may be more likely to get themselves into a treatment
group. Experimenters may be more likely to select those who are less
seriously affected, believing them more likely to show a favourable
outcome, while administrators may be more likely to select the worst
cases, on the basis that they need it more. For this reason subjects are
assigned using a random process. To ensure that there is no influence,
even a subconscious one, on selection, one approach is to have the 
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randomisation carried out secretly by a third party. This approach is also
recommended for small-scale teacher research. Large-scale educational
research will typically sample schools from a standard list of  schools,
and then pupils within them according to a published and standardised
sampling scheme in which there is no role for researcher preferences.

Expectations of experimenter and subjects, and contamination

These can influence outcomes. It is generally considered that the very
fact of  appearing to experience a treatment can be likely to induce
improvement (the placebo effect). Something similar can happen in
social research (the Hawthorne Effect). For this reason, the medical trial
was conducted ‘blind’: neither patient nor experimenter knew which
group each subject was in, nor were they able to influence the assignment
to control. In contrast, in the small education example, while it might be
possible to disguise from the pupils which group they were in by giving
them an alternative treatment, it is obvious to the teachers which group
their classes and their pupils are in. Realistically, it is going to be difficult
to hide this information from pupils too.

If  pupils know which group they are in, there is likely to be ‘contamina-
tion’ under which the effect of  the treatment is diluted by being made
available to the control group. This type of effect is less likely to happen
in the medical example. Under normal circumstances, a teacher is
unlikely to be able to teach one part of her class in a different way from
another part (though this may be possible using some kind of software
in a computer room). For this reason allocation is likely to be at a whole-
class level: all pupils in one class have the same treatment, and all pupils
in another class share the same treatment, though this is different from
that in the other class. (There could be some contamination when pupils
compare notes in the playground, or the ‘control’ teachers adopt some
aspects of  the research strategy.) This, in turn, means that the design is
much weaker, and it is unlikely that any but the strongest effects can be
detected with confidence. 

In large-scale education studies contamination can be minimised by
introducing initiatives at a whole-school level, and also by making sure
that schools taking part are not closely adjacent.

A guide to running randomised controlled trials for educational researchers 13



Intention to Treat

Being human, some patients are likely to drop out during the course of
the study. Since this process is also likely to take place in real life, the
experimenters introduce a concept known as Intention to Treat, so that
the outcome is studied for each group no matter whether they complete
the experiment or not. This is less likely to take place in the small-scale
education experiment described, but there is still the possibility that
some pupils may leave the school or be absent at the time of testing. In
larger-scale education experiments pupil or school dropout or non-
cooperation will occur. There are techniques to make adjustments for
such non-response, but it is best to always plan the study and contact
with schools to minimise any such dropout first: non-response
adjustment techniques may then be used.

In the small-scale education example, the teacher was able to use the pre-
existing structure of  termly tests as pre- and post-tests. This is very
convenient, and it is well worth piggy-backing on well-established
structures, if  possible. By contrast, in the medical example, if  it is not
standard practice to test at all stages, it may not be worth doing a pre-
test.

Inference

In the medical study, if  it is carried out properly, the experimenter will be
able to make strong claims about internal validity, and, depending on cir-
cumstances, about external validity. By contrast, the teacher may be able
to draw conclusions about internal validity, for example, of  her own
teaching practice, but not be able to make much in the way of  external
validity claims. 

One point that it is important to remember is that any innovation is
likely to be a zero-sum game: if  a teacher is teaching extra mathematics,
then she is probably teaching less of something else. Or if  it’s done in her
spare time it may be at the expense of  her energy or pupils’ morale. 

In summary, it may not be unfair to say that the medical experiment has
a lot of  weight in terms of  people’s health and well-being and indeed
sometimes lives, not to mention financial investment, so the aim of the
sample design must be to take account of all circumstances, and to make
the best possible decision. 
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By contrast, while education has a very important long-term aim, the
impact of individual changes is likely to be relatively small. The teacher’s
aim, rather than getting the best possible, has to be getting the best she
can. In a large-scale education sample, in addition to ensuring that it is
large and well enough designed to be internally valid, it will be important
to sample in a way that is sufficiently representative of the population as
a whole so that the results will also be externally valid. 

Finances

Is the game worth the candle? In every type of  study, there must be an
underlying appreciation of the balance between improvement and cost.
Thus, it will not be sufficient to show simply that a new drug is better
than the old one: it will be necessary to show that it is sufficiently better
to justify the substantial costs in changing the manufacturing process,
advertising, training staff  to use it, and so on. Similarly, a teacher will
have to decide whether the new practice is more onerous than the old one
and, if  so, whether the improvement justifies the increased expenditure
of  effort. Finally, a government research initiative may well wish to
conduct a formal cost-benefit analysis to see whether observed improve-
ments justify the increased expenditure. For all three approaches, it is
also likely to be important to compare this with possible alternatives in
terms of value for money. 
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3 The simplest design 

The very simplest design of an RCT involves:

• predicting the sample size required 

• randomising the individuals involved into two groups

• applying the intervention to one of the groups

• measuring the outcome for the individuals involved

• comparing the results and interpreting the differences.

These stages are considered in turn in this chapter. 

Predicting the sample size required

We are usually concerned with results that can be generalised to a wider
population, for example, a particular year group within a school or all
schools of a particular type. For a trial where the individuals concerned
can be a simple random sample of  the population, sample size
calculation is relatively straightforward. This situation might arise, for
example, if  we were sampling from a list of  pupils in a particular year
within a school or a list of  teachers in England. Here the total sample
size for the trial can be approximated using the formula (Lehr, 1992):

32
Effect size2

The effect size is a measure of the effect of the intervention in standard
deviation units of  the outcome. To predict sample size, we, therefore,
need to estimate what size of  effect we would need to measure to be
convinced that an intervention has worked. This should ideally be built
on prior knowledge of the outcome measure and how large a difference
would be educationally relevant. In practice, rules of thumb are used and
it is often the case in educational research trials that trials are designed to
detect effect sizes as small as 0.2 (that is, total sample size of 800; 400 in
each group). However, if  we had a great deal of confidence in the effect
of the intervention, it would often still be justified in designing a trial to
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detect an effect size of  0.5 (that is, total sample size of  128; 64 in each
group). 

An educational research trial often requires asking consent. It is
important to randomise the individuals that have agreed to take part
rather than those who have been asked to take part. For a trial on pupils,
the consent of school headteachers is often sufficient. If  a trial is run on
a new teaching method for pupils within a year group at a school, say,
this may happen during the course of normal teaching and consent may
not be an issue. However, requirements for consent are increasing, and it
would be advisable to seek guidance, especially if  the data is to be used
for any kind of formal research purposes. For larger trials where consent
is an issue, please refer to Chapter 5.

In educational research, we are often concerned with sampling clusters
of  individuals, for example, in schools or classes, and sample size con-
siderations become more complex. Chapter 6 addresses these scenarios.

Randomising the individuals involved into two 
groups 

It is important that you make every effort to ensure that your experiment
is genuinely random, and you have to watch out for unconscious biases.
These can come in at any time during the trial but, at this stage, we are
dealing with the randomisation process. If  you have a pet theory, or if
you feel that the results are in some way reflecting on your own
performance, it can be very easy to let what you would like to happen
influence the allocation, for example, avoiding an un-cooperative pupil
or redoing the allocation if  you do not like the way it looks. This may
seem easy, but renders your experiment worthless as a piece of scientific
research.

To avoid this happening, the best approach is to plan out your study,
write down in advance the plan of action and make sure you follow it to
the letter. Get a mentor to hold the plan and sign off all the stages as you
proceed. This way, not only will you ensure that you do not influence the
sampling subconsciously, you will also be able to rebut any suggestions
that you did.



How should you carry out the randomising? We shall give a description
of how it can be done for two groups. The process for more than two is
similar. It can be carried out in Excel or SPSS. The advantage of  using
SPSS syntax is that you end up with an audit trail of how the randomi-
sation was carried out. It can also be done by hand using a random
number table to generate a random number for each individual. 

The randomising process

Step 1

Produce a list of  the names of  the individuals who will be the experi-
mental subjects. This can be in any order and alphabetical is fine.
Number these in sequence 1, 2, … . The data set should look like this:

Copy and paste or write these directly into Excel or SPSS. In SPSS name
the variables NAME and ID.
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Alice Bacon 1

Cedric Duncan 2

(etc.) 3

4

18

19

20

William Younger 21

Xavier Zylstrom 22



Alice Bacon 1 0.065737

Cedric Duncan 2 0.473664

(etc.) 3 0.817567

4 0.534988

5 0.333037

6 0.970875

7 0.17347

8 0.863593

9 0.559949

10 0.468753

11 0.838642

Step 2

Create a set of uniform random numbers, one for each of the subjects. In
Excel use the formula =RAND() in the cell to the right of  the pupil
number and copy and paste this down to the bottom of the list. Or use
the following SPSS syntax: 

compute vrand = RV.UNIFORM(0,1).

execute.

The resulting data file should look like this:
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12 0.515478

13 0.723583

14 0.516084

15 0.675724

16 0.495068

17 0.271099

18 0.674255

19 0.065279

20 0.312911

William Younger 21 0.31516

Xavier Zylstrom 21 0.395487



Step 3

Sort the cases by the random number variable. In Excel use the sort cases
dialogue box or use the following SPSS syntax:

sort cases by vrand.

Step 4

If  there is an odd number of  individuals, decide which group will have
one extra before allocation. Allocate the first half  to the intervention
group and the second half to the control group. In Excel this can be done
by writing 1 in a new column for the first half  and 2 for the second half
on the list. If  the file is then required in the original order, cases can be
sorted back using the pupil number. In SPSS syntax:

if $casenum le 11 group=1.

if $casenum ge 12 group=2.

sort cases by id.

The resulting data file 
should look something 
like this:
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Alice Bacon 1 0.065737 1

Cedric Duncan 2 0.473664 1

(etc) 3 0.817567 2

4 0.534988 2

19 0.065279 1

20 0.312911 1

William Younger 21 0.31516 1

Xavier Zylstrom 22 0.395487 1



Applying the intervention to one of the groups 

The pupils are then allocated according to the appropriate group, and
the intervention carried out with those in group 1. The remaining pupils
make up the control group who, in the simplest design, carry on as they
would have done anyway. 

Measuring the outcome for the individuals 
involved 

One crucial aspect of  the outcome being measured is that it does not
relate directly to the intervention being used. For example, if  new
reading materials contained examples from football and ballet, the final
reading test should not be designed around questions about football and
ballet. In this scenario, any improvement seen in reading performance
could be attributed to subject matter rather than general reading ability.
Also, if  a researcher or intervention developer designs the test, they may
unintentionally create a test that favours the experimental group. This
problem is often solved by using a pre-developed commercially available
test. This has the added advantage that you do not have to develop the
test yourself.
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Comparing the results and interpreting the 
differences

Once you have conducted the experiment, and tested the participants,
the results are entered into your data set. It can be easy to make mistakes
at this stage, so it is a good plan to do this twice. In more formal research
this is done using a process known as punching and verifying or, more
recently, scanning. Smaller-scale research can do this by entering the
data twice, and comparing the results. The resulting data could look like
this.
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Group rscore88

1 36

1 -1

2 12

2 43

1 30

2 -1

1 18

2 42

2 31

1 29

2 12

1 27

2 -1

2 34

2 14

1 19

1 12

2 25

1 -1

1 -1

1 35

1 -1



Note that the second case has apparently a score of  -1. This is because
‘missing’ values have been coded as -1. A missing case arises where it has
not been possible to record a score for an individual who took part in the
project. Other cases also have missing scores.

Ideally, we should ensure that there is no missing data in the first place.
In particular, a supplementary testing session can be arranged to pick up
those off sick the first time. Even after this, there may be some for whom
there is still no score. How we deal with the missing cases depends on
how we interpret the fact that the individual is ‘missing’. It may be that
we can assume that those not tested are no different from the rest. For
example, they could just be off  sick on that one day. In this case, it may
be best just to exclude them from the analysis. This can be done in SPSS
by the command:

missing values rscore88 (-1).

This command tells SPSS to ignore any cases with this value when
dealing with the variable RSCORE88. 

Alternatively, no result recorded may be a very important finding. For
examinations, it could indicate that the individuals were truanting, and
this may be happening at different rates in intervention and control
groups. Or, in a project aimed at changing attitudes, it could indicate that
the project had been so unsuccessful that individuals had dropped out of
the intervention group. 

In these situations, simply excluding individuals from the analysis could
bias the result. There are sophisticated methods for dealing with missing
values when other background data is available (Shadish et al., 2002). If
there is suspicion that individuals are missing for a reason that might in
some way impact on the results then the analysis may be compromised
without (or even with) these methods. 

A common practice is to include missing individuals with the mean score
of  the group. This should not be done since it probably misrepresents
what they would have scored and gives us the impression of  greater
precision than was actually available. Chapter 7 has a more detailed con-
sideration of missing data.
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Levene’s 
Test for 
Equality 

of 
Variances

t-test for Equality of Means

F Sig. t df Sig. 
(2-tailed)

Mean 
Difference

Std Error
Difference

95% 
Confidence 
Interval 
of the 

Difference

Lower Upper

rscore88 
Equal
variances 
assumed

.940 .349 -.299 14 .769 -1.750 5.853 -14.304 10.804

Equal 
variances
not 
assumed

-.299 13.369 .770 -1.750 5.853 -14.360 10.860

Group N Mean Std Deviation Std Error Mean

rscore88 1 8 24.88 10.357 3.662

rscore88 2 8 26.63 12.917 4.567

In this example, we shall exclude the missing cases, assuming they are
missing for a reason that is completely unconnected with the experiment
and the outcome measured. Now we shall conduct a t-test to determine
whether there is a difference in outcomes between the two groups. The
following SPSS syntax can be used for this:

missing values rscore88 (-1).

T-TEST GROUPS = group(1 2)

/VARIABLES = rscore88.

The output from this is shown in Tables 3.1 and 3.2.

Table 3.1 Group statistics

Table 3.2 Independent samples test

A guide to running randomised controlled trials for educational researchers24



The first point to note is that, because of  missing data, the numbers in
each group are down, from 11 to 8. This is likely to reduce the effective-
ness of the experiment.

In this chapter we shall use the term ‘significance’ (properly ‘statistical
significance’, and sometimes abbreviated to ‘sig.’). This answers the
question: ‘Suppose there is actually no difference. What is the probability
of an apparent difference of this size arising by chance?’ This probability
varies between 0, meaning that it is impossible that this could have
happened by chance alone, and 1, meaning that it was certain that this
could happen. By convention, probabilities below 0.05 are treated as 
statistically significant. This means that there is only 1 chance in 20 that
the difference is due to chance.

There are two types of  t-test in the situation, depending upon whether
you treat the variances of the two groups as equal or unequal. The first
part of  Table 3.2 deals with whether they should be treated as equal or
unequal. Sig. has a value of 0.349. This is substantially larger than 0.05
and means that it is quite likely that the difference in variance seen could
have happened by chance, even where there is actually no difference. This
means that, on the basis of  the data we have here, there is no reason to
believe that the variances of the groups are not equal. For this reason, we
can treat the variances of  the two groups as equal as far as the t-test is
concerned. 

The next aspect, and the one which is of  most interest, is to assess
whether there is actually a difference between the two groups in average
performance. To do this we set up a null hypothesis, namely that there is
really no difference between the two groups, and see what the possibility
is that this observed difference could have arisen by chance given this
assumption. There are two parts of Table 3.2 that answer this question.
The first is Sig.=0.769. This is much larger than 0.05 and implies that it
is likely that the observed difference could have occurred by chance and
we can reasonably accept the null hypothesis as true. Alternatively, we
can look at the extreme right of Table 3.2, the part labelled ‘95 per cent
confidence interval of  the difference’. To say that the 95 per cent
confidence interval extends from -14.3 to 10.8 may be interpreted to say
that there is only a 5 per cent (= 100 – 95) chance that the actual value
lies outside this range. The important question is whether the estimated
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confidence interval contains the value 0. If  it does not, then we assume
that this study provides us with evidence that the difference is not zero. If
the confidence interval does contain zero, then this study does not provide
us with any evidence to abandon our null hypothesis. In this case, the
confidence interval contains 0 and we, therefore, decide that the
experiment does not provide evidence of any effect from the intervention.

Real-world example of the simplest design

An education body wishes to upgrade their registration database in
order to achieve a comprehensive coverage of registrants’ ethnicity and
disability data. In order to assess the feasibility of this, a pilot study was
conducted where this data was requested from a sample of respondents.
One possibility of  particular interest was whether including a pre-paid
envelope might improve the return.

The proposed research question lends itself  beautifully to randomisa-
tion. The population was defined and a single stratified random sample
of  6800 teachers was drawn from the database. The sampled teachers
were then randomly allocated to one of  two groups. Each group was
mailed a letter requesting ethnicity and disability information. In
addition, one of the groups was sent a pre-paid reply envelope:

• group 1: data request form and cover letter, and pre-paid envelope

• group 2: data request form and cover letter, unpaid envelope.

The proportions replying were pretty low, but they appeared to be
affected substantially by whether or not a pre-paid envelope was
included. The analysis output is shown in Tables 3.3 and 3.4. The
variable RESPOND is coded (0 = No; 1 = Yes).

Table 3.3 Group statistics
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Group N Mean Std Deviation
Std Error
Mean

respond
Not prepaid 3400 .2579 .43757 .00750

Prepaid 3400 .3344 .47185 .00809



Table 3.4 Independent samples test

Among those receiving the pre-paid envelope, approximately a third,
33.4 per cent, responded. Of  those that did not receive the pre-paid
envelope, just over a quarter, 25.8 per cent, responded. Table 3.4 shows
sig.=.000 hence this difference is statistically significant at the 0.1 per
cent level, and it also seems to be an effect that is practically useful. It is,
therefore, clear that including a pre-paid envelope helps response. 
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t-test for Equality of Means

t df Sig. 
(2-tailed)

Mean 
Difference

Std Error
Difference

95% 
Confidence 
Interval 
of the 

Difference

Lower Upper

Equal
variances 
assumed

-6.929 6798 .000 -.07647 .01104 -.09810 -.05484



4 Testing before the intervention

So far we have looked at an ‘after only’ design for experiments: 

• set up the two groups for the experiment

• carry out your experiment

• measure whatever it is at the end.

There is a more powerful design, still under the randomised trials
umbrella, which can be schematised as:

• set up the two groups for the experiment

• measure whatever it is at the beginning 

• carry out your experiment

• measure whatever it is at the end.

This is a more powerful design than the simple ‘after only’ design, and
often a substantially more powerful one. It is more powerful because the
use of baseline data in the analysis can explain some of the variation in
follow-up outcomes. Any genuine difference in progress between the
groups of  the trial is then less masked. Baseline data also has a role in
correcting for any imbalance in outcomes between the groups of the trial
that might have resulted at randomisation. Such imbalance could have
arrived by chance even if  the randomisation were carried out properly or
through some fault in the randomisation process. In this latter case, the
trial cannot truly be said to be randomised.

The use of baseline data in the design and analysis of a randomised trial
will be considered using a real-world example. However, first, it is
important to visit the issue of sample size. Since the use of baseline data
can make our analysis more sensitive, it is possible that it can reduce the
sample size required for the experiment. This issue is considered in
Chapter 6. 
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Example of analysis with baseline data

This example uses data from a randomised controlled trial of  reading
materials for struggling readers. A box-and-whisker plot of  the post-
intervention measure obtainable using the following syntax in SPSS is
shown in Figure 4.1. The variable BTSCORE is the outcome and INT
has a value of 0 for the control group and 1 for the intervention group:

examine vars=btscore by int/

plot=boxplot.

Figure 4.1 A box-and-whisker plot of the post-intervention measure for intervention
and control groups

It can be seen from the plot that there does not seem to be much
difference in outcome scores between the two groups: the median and
inter-quartile ranges are very similar. Table 4.1 shows the output after
analysing the post-intervention measure using a t-test.
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Table 4.1 Independent samples test

This confirms our suspicions that there is not much going on. The sig-
nificance value of  p=0.375 suggests that we should accept the null
hypothesis that there is no difference between the groups.

However, we have more data at hand. We are able to explain some of the
post-intervention outcome variability by using pre-test data in our
analysis. In other words, since we know which pupils are better or worse
readers on the basis of  their pre-test score, we can do a more sensitive
test of whether the intervention has worked. The pre-test was a different
test to the post-test that tested the same reading construct. Using a
different test has the advantage that pupils do not learn directly from the
pre-test for the post-test. This analysis is done using a regression model:

regression vars=btscore atscore int/

dependent=btscore/

method=enter.

Table 4.2 shows part of the outcome from this analysis.
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Levene’s 
Test for 
Equality 

of 
Variances

t-test for Equality of Means

F Sig. t df Sig. 
(2-tailed)

Mean 
Difference

Std Error
Difference

95% 
Confidence 
Interval 
of the 

Difference

Lower Upper

Equal 
variances 
assumed

3.648 .056 .888 784 .375 .798 .899 -.966 2.563

Equal 
variances
not 
assumed

.882 742.101 .378 .798 .905 -.979 2.576



Table 4.2 Coefficients

Here, the post-intervention outcome BTSCORE is regressed on
ATSCORE, the baseline measure, and INT, the grouping variable. We
can see from the large value of t and the p<0.001 significance value for
ATSCORE that this is a highly significant predictor of  BTSCORE, as
we might expect. However, even with this more powerful analysis, the
significance value for INT is p=0.119, that is, it is not statistically
significant at the 0.05 level and we can accept the null hypothesis. The
coefficient of INT (0.691 score points) tells us the size of the difference
between the two groups, after taking into account any differences in
ATSCORE.

From this example, we can begin to see that the use of baseline data has
helped. The value of t has increased from 0.89 in the t-test to 1.56 in the
regression analysis. Perhaps there is something very slight going on that
we might have detected with a bigger sample? The important point to
note here is, even if  there is an effect, it is very slight in terms of  size
(effect size=0.691/12.574=0.05) and probably not of educational signifi-
cance (12.574 is the BTSCORE standard deviation).
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Model

Understandardized
Coefficients

Standardized
Coefficients

t Sig.

B Std Error Beta

1

(Constant) 10.647 .616 17.278 .000

atscore .780 .016 .872 49.066 .000

int .691 .443 .028 1.559 .119



5 Clustered data

So far we have talked in terms of  allocating individuals (pupils and
patients) at random to groups. However, this can be more of a problem
than you might at first anticipate. Suppose you want to compare two
methods of teaching a topic, or two reading schemes, for example. Can
you allocate the pupils randomly within a classroom? Well, yes, of course
you can – but is it a sensible procedure? What would be the problem? 

If  you are trying to teach half  the class using one method, and the other
half  by another method, while both are sitting in the same room, then it
is probable that, in most cases, one half  will hear what the other is being
told, and vice versa. This is called contamination. Perhaps this might not
happen if  you are using some kind of  individualised instruction, using
either workbooks or computer-aided instruction. However, even then
they may overhear some of  what is happening with their neighbour. 

In such a situation, it is usual to allocate interventions to complete
classes. This could certainly be expected to cut down on the amount of
contamination, and you could expect to reduce this still further by using
different schools. However, this immediately gives rise to other problems.
Suppose you divide the pupils into two groups A and B, and ask teacher
A to deliver intervention A and teacher B to deliver intervention B. We
then find that pupils in group B (say) do substantially better than those
in group A. Can we assume from this that intervention B is better than
intervention A? Not necessarily: it could be that teacher B is more
effective on this topic than teacher A. 

This raises the question of the unit of allocation. If  we have 200 pupils,
20 to a class, then we have 10 classes. If  we then randomly allocate
classes to interventions, we have only 10 separate units of allocation. In
this case, the unit of  analysis should also be the unit of  allocation. It is
unlikely that we would have sufficient classes to be able to make any
conclusions from this kind of experiment. For this reason it is virtually
impossible to run a cluster randomised trial within a single school. 

Should we take the whole class or just a sample if  allocating interven-
tions at classroom level? The basic statistician’s mantra is ‘other things

A guide to running randomised controlled trials for educational researchers32



being equal, the more the better’. However, ‘other things being equal’ is
quite an important qualification and the improvement in accuracy from
additional data collection may not be worth the cost of collecting it. In
this case, it depends crucially on the administrative procedures used in
the study. If  we are envisaging pupils being withdrawn singly or in small
groups for additional attention or computer experience, then the fewer
withdrawals the better. However, if  you are planning to give, for example,
a written test to a group of  children, it is probably going to be less
disruptive to the teachers and pupils involved to test the whole class. In
this situation, unless buying or printing the actual tests is expensive, you
have effectively got ‘free data’ if  you test the entire class!

So, in carrying out an RCT comparing subjects already organised into
clusters (a cluster randomised trial), the steps are essentially as before for
the individual-level allocation. We use the term ‘cluster’ to refer to the
pre-existing allocations of, for example, classrooms. The simplest cluster
randomised trial involves:

• consideration of the sample size required

• randomising the clusters involved into two groups

• applying the intervention to one of the groups

• measuring the outcome for the clusters involved

• comparing the results and interpreting the differences.

Considerations of sample size and analysis are more complex for cluster
randomised trials. If  in doubt, it is recommended that you consult a
research organisation experienced in running large cluster randomised
trials for advice. Each of  the above steps is considered here for the
simplest design.

Consideration of the sample size required

Please refer to Chapter 6 for calculation of the achieved sample size. Bear in
mind that not everyone may want to take part, so you may want to take a
larger starting sample than you will eventually need. For cluster trials in
educational research, the consent of the schools involved is required. 
In some cases, pupil consent or that of their parents would also be needed.
The timing and wording of the request for consent is crucial. It should:
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• be requested before randomisation so that only those consenting clusters
are randomised

• contain a rationale for the trial and, in particular, an explanation of why
randomisation is being used

• contain an account of why it is just as important to carry out the outcome
measurement if selected in the control group. 

Trials should be ‘ethically neutral’ in that we do not know whether the
intervention being trialled improves, makes no difference or is
detrimental. In reality, there is often a perception in schools that the
intervention is good and the role of the control group may be perceived
as onerous. After all, why would one run a trial of  a programme if  one
didn’t really believe it was ‘better’ in some sense? For this reason,
incentives can be offered to the control group such as the intervention
itself  (but delivered after the trial). Similarly, if  a trial involves many
stakeholders that require ‘buy-in’, visit to explain the principle behind an
RCT may pay dividends.

You can gain an impression of  the number that are likely to consent
from previous exercises by yourself  or from colleagues, or, if  the worst
comes to the worst, by asking a few informally. Also, bear in mind,
people saying they will take part and actually doing so, are not
necessarily the same thing, so you should allow for dropout here as well. 

Randomising the clusters involved into two 
groups

Once a list of  consenting clusters is obtained, randomisation can be
carried out at the cluster level as in Chapter 3.

Applying the intervention to one of the groups

The intervention is then administered to the clusters selected to be part
of the intervention group.



Measuring the outcome for the clusters 
involved

Please refer to Chapter 3.

Comparing the results and interpreting the 
differences

There are many quite complex methods for analysing data of  this kind
including, for example, multi-level modelling. However, for relatively
small-scale applied research of the kind considered here, such as can be
carried out by a teacher or school for their own purposes, a simple t-test
comparison of the cluster means will often be sufficient. 

To analyse the results, we have to compare the average scores for the
clusters (schools, classes, or whatever). As an example, we can consider a
study in which schools were randomly allocated to a treatment or a
control cluster. This is the same data that was used for Chapter 4. We
now see that the analysis in Chapter 4 was problematic, since it ignored
the clustered nature of the data. If  individuals, rather than clusters, had
been randomised, the Chapter 4 analysis would have been sound.

We start by showing a box and whisker plot of the clustered data (Figure
5.1). This can be obtained using the following SPSS syntax, where
CONTACT is the school identifier:

aggregate outfile=*/break=contact/

matscore=mean(atscore)/mbtscore=mean(btscore)/int=

first(int).

examine vars=mbtscore by int/

plot=boxplot.
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Figure 5.1 A box-and-whisker plot of the post-intervention measure for intervention
and control groups (school means)

It looks slightly different from the plot in Chapter 4 because it is of
school mean values. Please see Chapter 3 for a brief  consideration of
how to deal with missing data, and Chapter 7 for more detailed consid-
eration. It can be seen from the plot that there does not seem to be much
difference in outcome scores between the two groups: the median and
inter-quartile ranges are very similar. The post-intervention measure
using the school mean baseline scores as a background variable in a
regression is analysed using the following syntax:

regression vars=matscore mbtscore int/

dependent=mbtscore/

method=enter.

Table 5.1 shows the result obtained (see Chapter 4 for an explanation).
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Table 5.1 Coefficients

We can conclude from this that the intervention does not have a
significant effect (p=0.197). If  we compare the result here with that for
the unclustered analysis presented in Chapter 4, we see that the standard
error of  the coefficient for INT has increased from to 0.443 to 0.651.
This is an illustration of why it is important to analyse clustered data in
this way; by analysing the data at pupil level, we had underestimated the
error associated with the intervention effect. In the example here it does
not make a difference, but in other situations it could easily make the
difference between a result being statistically significant and not. 

‘Splitting’ clusters

One viable strategy is to sample schools and then randomise eligible
pupils within each school. This is applicable to an intervention where
small numbers of  pupils are removed from classes to receive the inter-
vention. This is very attractive since it improves statistical power as it is
effectively an individually randomised trial and individual pupil scores
can be analysed. However, care should be taken when randomising
because schools vary in size. If  a fixed number of  eligible pupils are
randomised to the intervention group in each school and the remainder
get allocated to the control group, bias is introduced since pupils from
larger schools are more likely to end up in the control group. If  the inter-
vention is only available to a fixed number of eligible pupils per school,
the safest way to embark on randomisation is: 

• from the eligible pupils in the school, randomly sample twice the
number that can receive the intervention
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Model

Understandardized
Coefficients

Standardized
Coefficients

t Sig.

B Std Error Beta

1

(Constant) 9.741 1.247 7.811 .000

matscore .803 .035 .921 22.654 .000

int .844 .651 .053 1.298 .197



• randomly assign half  of  these to the intervention group and half  to
the control.

This is an example of  when it would be tempting to leave the sampling
and randomisation up to the school. This is generally not a good idea
since there is widespread evidence of  ‘subversion bias’ (Torgerson and
Torgerson, 2008) when randomisation is left to anyone other than the
organisation running the trial. The term ‘subversion bias’ makes it sound
like it is intentional, which sometimes it is; however, often there is just a
lack of understanding about how to conduct randomisation.
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6 Calculation of sample size

For the simplest design of a trial, where we are taking a random sample
from a population of  individuals with no baseline data, please refer to
Chapter 3. Designs often require greater complexity than this. This
chapter starts with some general considerations, including some basic
sampling theory, and then addresses two common scenarios specifically:
clustered samples and baseline data.

How big a sample do we need to design an 
experiment scientifically?

We assume that it has been decided to administer the intervention at
school level. It would be simpler if  we were able to take just some of the
institutions involved, rather than the whole population: most reputable
studies do this. Why is a sample satisfactory, rather than taking the
whole population?

If  we wanted to find the average height of  a member of  the UK
population, we might select one individual at random, assuming that it
was possible to do so, and measure their height. It is clear that this would
not provide a very good estimate: if  we had selected another individual,
we might have got a completely different result. Now, if  we were a race of
invading Klingons, it might be enough to know whether the leading
inhabitants were (say) the size of ants, humans or whales, but for practical
use we would want a much more precise estimate. If, somehow, we could
measure all inhabitants then there would be no sampling error. But, in
addition to being expensive and difficult, it would almost certainly be
overkill, in the sense that we are unlikely to need to know the result to such
a degree of precision. Thus, a sample of around 7000 individuals gives a
standard error for mean population height of  approximately 0.1 cm,
which is likely to be precise enough for most purposes. For this reason it is
usual to take a sample, rather than the entire population. 

To decide on the size of  sample required, we can think about it in this
way: ‘How big a sample is it necessary to have in order to be adequately
sure that we can detect an effect that is large enough to be of educational
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significance and what allowance do we need to make for the fact that we
are dealing with clusters rather than individuals?’ This definition as it
stands raises as many problems as it solves. What do we mean by
‘educational significance’, ‘detect an effect’, and ‘adequately sure’ and
‘allowance for clustering’? We consider each of these in turn. The avail-
ability of good covariates (such as the baseline data discussed in Chapter
4) can have a substantial effect on the design of an experiment, specifi-
cally on the sample size required, and we consider this separately. 

Educational significance

To identify significance, we have to think of a commonly acceptable way
of measuring the size of an effect. So, for example, in other fields we use
measures such as centimetres and currency to assess effects. This is not as
easy as one might think at first sight in education or the social sciences.

In dealing with UK public exams, most readers would be prepared to
accept an impact measured in terms of number of GCSEs, Highers or in
exam grades. However, this type of  widely agreed measurement is the
exception rather than the rule. It could be more difficult to reach an
intuitive agreement on what would constitute useful progress in terms of
number of items correct on a reading test, or some kind of measure of
behaviour. The widely used alternative is to compare the size of an effect
with the population standard deviation. In a normally distributed
population two-thirds of  the population lie within one standard
deviation (plus or minus) of  the mean, and 95 per cent within two
standard deviations. This is used to create a measure called effect size
(ES), that is the fraction of the population standard deviation (SD) that
a particular difference represents:

ES  =
Size of difference
Population SD

Even once we have reduced impact to terms of effect size, we still need to
know how big is ‘big’ and how small is ‘small’. Many social scientists
follow Cohen (1988), whose conventional criteria small, medium and
large are near ubiquitous across many fields. For Cohen an effect size of
0.2 to 0.3 might be a ‘small’ effect, around 0.5 a ‘medium’ effect and 0.8
to 1.0 a ‘large’ effect. However, it is important to recall that the terms
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small, medium, and large are relative, not only to each other, but to the
area of  behavioural science, or even more particularly, to the specific
content and research method being employed in any given investigation
(Cohen, 1988). They should be used only as a last resort when one
cannot think of anything else.1 It is arguable that the definitions of small,
medium and large do not carry over to education. For example, Wiliam
(2008) suggests that 0.3 standard deviations is approximately the average
progress in achievement made by a pupil in a year. In such a case, an
effect size of  0.2 would be described as small using the Cohen
conventions, but in fact would probably be considered rather large in an
educational context. Wiliam suggests an effect size of 0.1 or even 0.05 as
being substantively useful. The decision on what effect size to use is not
cut and dried, and will require some thought depending on the circum-
stances and aim of the experiment. 

Adequately sure that we can detect an effect

Two hypotheses are considered: the Null Hypothesis (H0), that there is no
difference between the two groups, and the Alternative Hypothesis (H1),
that there is a difference d between the two groups. The Null Hypothesis
is unspecific (no difference) while the Alternative Hypothesis specifies an
alternative value for d the difference.

The most widely used approach to statistical significance testing defines
in advance the probability of  making a Type I Error, that is, believing
that we have detected an effect if, in fact, there is not one present. In
statistical jargon, this is known as the size of the test, and it is usually set
at 0.05. Using this value, if  you repeated the experiment many times in
the absence of  a genuine effect, you would on average find one
apparently statistically significant result in every 20 attempts. 

Another aspect is what is called a Type II Error. This is, in a way, the
inverse of the Type I error, that is, you believe that you have not shown
an effect, when in fact there is one. In statistical jargon, this is related to
the power of the test. The power of  a test depends on the definition of
the effect that you want to be able to detect. The probability of detecting
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an effect given that it exists is described as the power of a test. While the
cut-off  probability level for H0 is conventionally 0.05, the conventional
probability level for H1 is 0.80, which is the power. 

One other question to be considered is whether a one-sided or two-sided
test is to be used. This is a tricky question. Historically and convention-
ally, two-sided tests are used. That is to say, we test not just whether the
intervention group performs better than control, but also whether it
performs worse. The alternative is called a one-sided test, which tests
differences in just one direction, say just that the intervention group is
better. In many ways in this context a one-sided approach makes more
sense. Suppose you were considering introducing a new treatment. Your
decision space would be:

a) new treatment certainly better: introduce it

b) new treatment not certainly shown to be better: forget it.

In many cases all you really want to know is whether a new treatment is
better than the old one: you are not really interested in whether it is
worse. If  it is not an improvement, then forget it. So a one-sided test
could make more sense. A one-sided test would have the benefit that it
was more likely to detect effects. Unfortunately there is such a strong
convention that two-sided tests are used, that it would probably not be
acceptable to use a one-sided test. If  you want to publish your results in
a journal, editors might be reluctant to accept an article with one-sided
significance and there might a suggestion of  ‘what are you hiding?’
Whatever is decided, it is important to specify in advance if  results are
going to be analysed using a one-sided test.

Allowing for clustering

One other aspect of a design is clustering effects. These weaken both size
and power. The standard method of assessing an effect, namely the use
of  a t-test on individual test scores, does not apply in this situation
because the data is clustered, and, as already noted, it is as if  we have a
rather smaller sample.

What allowance do we need to make for clustering? This depends on how
alike the subjects are within the clusters. If  everyone were the same
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within a cluster at the end of the study, then there would be little point in
taking more than one individual in a cluster. If, on the other hand, there
were no relation between which cluster an individual is in and other
characteristics, this would be the same as allocating at individual level. 

Before going any further about determining sample size, we define
another two statistics: the intra-cluster correlation ρ, and the design
effect (Deff). The degree of similarity is indexed by the statistic ρ, which
gives the ratio between the cluster variance and the total variance:

Between variation
ρ =

Total variation

The design effect (Deff) is the extent to which the size of  the sample
needs to be increased to achieve the same precision as a simple random
sample and is defined as:

Deff = 1 + (b - 1) ρ

where b is the mean cluster size.

Statisticians working in designing randomised trials frequently think in
terms of  the Minimum Detectable Effect Size (MDES). The MDES
varies according to the size (P-value for rejection) and power, but a
convention has been widely adopted that the probability of  a Type I
Error (rejecting the Null Hypothesis when it is true) is taken as the
standard 0.05 and the power as 0.80. The MDES is the smallest effect
that the researcher would have an 80 per cent chance of detecting under
these conditions. 

Before undertaking a study, the researcher should specify how small an
effect they would want to detect. The design should be able to detect an
effect of at least this size. An approximate formula for MDES is given by
Bloom et al., 2007:

MDES = M
ρ 1-ρ

P (1 - P) J
+

P (1 - P) n J

ρ is the intra-cluster correlation (without covariates), that is the
proportion of the overall variance due to variation between the clusters. 

√
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P is the proportion of  clusters (for example, schools) allocated to the
treatment group by the randomisation procedure.

n is the number of  individuals (for example, pupils) in each cluster.

J is the total number of clusters randomised.

M is a multiplier based on the t-distribution. 

There are two terms inside the square root sign. Both are divided by the
factor P(1-P). This reaches a maximum when P=0.50, showing that the
most effective design is when the allocation between treatment and
control is on an equal basis. The first term under the radical, 

ρ

P (1 - P) J

relates to the variation between clusters, with ρ proportional to the
between-clusters overall variance, and the divisor J, relating to the
number of clusters. The second term under the radical, 

1-ρ
P (1 - P) n J

relates to the variation within clusters, with 1-ρ proportional to the
within-clusters overall variance, and the divisor nJ, relating to the
number of  individuals. Since the divisor for the second term is the
product of  that for the first term and n, it is going to be substantially
larger and so it will generally happen that the between-cluster variation
is more important than the within-cluster variation in determining
MDES.
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Example 1

Suppose we want to be able to identify with confidence an effect size of
0.5 and the intra-cluster correlation ρ is 0.2. Will a sample of 40 schools,
10 pupils in each, be sufficient? We assume that the allocation ratio is 0.5
to treatment, 0.5 to control. The value of M is approximately 2.8:

MDES = 2.8*sqrt[0.2/(0.5*0.5*40)+(1-0.2)/(0.5*0.5*10*40)]

=2.8*sqrt[0.02+0.008]

= 2.8*0.167

= 0.47

Since the calculated size is smaller than the stated effect size of 0.5, under
this design we are able to detect the specified size, so the design is satis-
factory. 

Deciding on suitable values for the MDES 
   formula

MDES

This was discussed in the section on educational significance, and to
some extent it is a matter of judgement for those involved. The possible
benefits of the innovation have to be balanced against the costs, either in
time and effort, or in actual financial terms, and also in terms of what is
realistic. 

To detect a really small effect may require a sample larger than the
researcher considers feasible. In such a case the researcher has to
consider whether the number involved in the experiment should be
increased, perhaps bringing in more participants, or whether the focus
should be only on detecting relatively large effects, or even whether the
plan as it stands should be reconsidered. 
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This is important: there will be no point in deciding that you would be
interested in an effect of  one-tenth of  a standard deviation, and
designing an experiment that could not detect it.

Multiplier, M

This is a number that depends on the size of the test, the power desired
and whether a one-tailed or two-tailed test is used. As discussed above,
there is a convention of  size = 0.05 and power = 0.80. Most experi-
menters would want to follow this, especially if  they want to publish the
results. When J exceeds about 20, the value for this multiplier is approx-
imately 2.8 for a two-tailed test and 2.5 for a one-tailed test, given size =
0.05 and power = 0.80 (Bloom, 1995).

Allocation proportion, P

The most efficient allocation statistically would be 50:50 between exper-
imental and control group. However, it may be that it is easier or cheaper
to collect the data for one group. For example, in a school setting it could
be that there is no special input to the control group and the data
required is collected anyway in the course of normal school work. In this
situation it would make most sense to increase the number in the control
group. 

Intra-cluster correlation, ρ

This is where things start to get a little tricky. The experimenter appears
to be caught in a catch-22. To carry out the study you need to know this
information; to find out the information you need to carry out the study.
How does one get this information without actually conducting the
study? If  this is your first study in this type of area, this might indeed be
difficult. However, there are ways around this. 

• A study of the background literature might reveal results that give an
indication. If  the information is not available in an article, and a
publication is relatively recent, it may be worth contacting the authors
directly. 
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• Some articles have been published specifically looking at intra-cluster
correlations. For example, Hedges and Hedberg (2007) have produced
extensive tables of  intra-cluster correlations by age for reading and
mathematics. These are for the USA, but will at least provide a
ballpark estimate. Hutchison (2009) provides a selection of values of
intra-cluster correlations within schools by a range of  wide topic
areas, such as leisure activities and attitudes to school.

• If  all else fails, then, for schools, most academic attainment variables
have a value of ρ in the neighbourhood of 0.2, so assuming 0.25 will
be a safe bet, and most attitudinal and lifestyle variables will have a
value of ρ in the neighbourhood of 0.05 or less. Be aware that if  you
sample entire classes in streamed schools, then intra-cluster
correlation for attainment variables is likely to be very high.

Number in each cluster, n

While the number of  respondents within each cluster has an effect on
MDES, it is less important than the number of clusters: 20–30 is often a
useful number of  subjects within each cluster. Because the precise
number is less important, it can often be useful to allow practical con-
siderations to have a substantial impact. For example, it will be relevant
to consider the number of interviews one can do in a day or a morning.
Or, if  pupils are withdrawn from normal classes to form an experimental
group, then the number that can be taught in such a format will be
important. 

Number of clusters randomised, J

Finally, the number of clusters (for example, schools) is a very important
determinant of  the MDES. This is what should be increased (or
decreased) to ensure an appropriate MDES is obtained. 
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Example 2

A senior civil servant wishes to investigate the effect of a new method of
teaching reading. She would like to use an experimental design to ensure
that findings cannot be undermined by the use of self-selected samples.
Even a quite small improvement would be educationally important over
the whole country, so she decides to select an MDES of 0.2. Background
literature suggests that the intra-cluster correlation will be around 0.2.
Will a sample of  100 schools, with one class of  25 pupils selected
randomly in each school from the target year group, be sufficient for this
purpose? We assume that the allocation ratio is 0.5 to treatment, 0.5 to
control.  

MDES = 2.8*sqrt[0.2/(0.5*0.5*100)+(1-0.2)/(0.5*0.5*100*25)]

= 2.8*sqrt[0.008+0.00128]

= 2.8*0.0963

= 0.27

Since the MDES from this design is larger than that sought, it is not
going to be satisfactory. As an exercise, the reader might like to show that
around 180 schools would be required. 

Baseline data

Another aspect is the use of  covariates such as the baseline data
discussed in Chapter 4. Such data could also consist of pupil test scores
on a different test or the attitude of the people enrolled in a campaign at
the start of  the study, or some kind of aggregated measure, such as the
proportion of pupils with 5+ A*–C grades at GCSE. 

In the previous section, we discussed how to determine the MDES for a
completely randomised cluster design. It was emphasised that before
undertaking a study, the researcher should specify how small an effect
they would want to detect, and if  the suggested design gives an MDES
of greater than that, the design is not strong enough. 
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Cluster randomised trials tend to need substantially more participating
individuals because individuals within the same cluster tend to be more
similar than individuals in different clusters; and the power of the design
is very much driven by the number of  clusters, much more than by the
number of individuals within clusters. It can be that to get a sufficiently
powerful design to detect the type of  effect that can be of  interest in
education, we need to increase the number of  clusters to a prohibitive
number. Fortunately, there is another way in which we can increase the
power of a cluster-level RCT, and this is by using covariates.

Do we need these covariates to be at the cluster or individual participant
level? For this discussion it is helpful to term the individual participant
as ‘level 1’ and the cluster as ‘level 2’. Intuitively one might expect that
covariates would be ‘stronger’ at level 1 since there is more variance at
this level. However, the situation is different in this case, since we are
investigating effects at level 2. In actual fact, level-1 covariates can be
expected to have an effect on level-2 differences, since their aggregated
means will differ between clusters. Also they can be expected overall to
have a stronger effect than level-2 covariates since there should also be an
effect on within-cluster variation. Although there are more sophisticated
ways of  analysing clustered data, we are proposing in Chapter 5 that
cluster means are analysed. For this reason, level-2 covariates would be
sufficient here.

In order to calculate the sample size needed for a cluster randomised trial
with both level-1 and level-2 covariates, an approximate formula can be
used (Bloom et al., 2007): 

MDES = MJ-K
ρ(1 - R2

C) (1 - ρ) (1 - R2
I)

P (1 - P) J
+

P (1 - P) n J

ρ is the intra-cluster correlation (without covariates), that is the
proportion of the overall variance due to variation between the clusters. 

P is the proportion of  clusters (for example, schools) allocated to the
treatment group by the randomisation procedure.

n is the number of  individuals (for example, pupils) in each cluster.

J is the total number of clusters randomised. 

√



50 A guide to running randomised controlled trials for educational researchers

K is the number of level-2 covariates included in the model.

MJ-K is a multiplier based on the t-distribution. 

R2
C is the proportion of the random variation between schools that is

reduced by the covariates.

R2
I  is the proportion of the random variation within schools that is

reduced by the covariates.

If  there are no covariates then both R2
C and R2

I  are equal to zero and the
formula reduces to that in the previous section (see equation on p.43). 

Further consideration of this formula is similar to the previous section.
There are two terms inside the square root sign. Both are divided by the
factor P(1-P). This reaches a maximum where P=0.50, showing that the
most effective design is when the allocation between treatment and
control is on an equal basis. The first term under the radical, 

ρ (1 - R2
C)

P (1 - P) J

relates to the variation between clusters, with ρ proportional to the
between-cluster variance and (1 - R2

I) the proportion of  this remaining
after the effect of  the covariates. The second term under the radical, 

(1 - ρ) (1 - R2
I)

P (1 - P) n J

relates to the variation within clusters, with (1-ρ) proportional to the
within clusters overall variance, (1 - R2

I)     the proportion of this remaining
after the effect of the covariates. Since the divisor for the second term is
the product of that for the first term and n, it is going to be substantially
larger and so it will generally happen that the between-cluster variation
is more important than the within-cluster variation in this design stage.
This implies in turn that the important aspect of  any covariate is the
amount of between-cluster variation it explains.
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Example 3

Suppose, as before, we want to be able to identify with confidence an
effect size of 0.5 and the intra-cluster correlation ρ is 0.2. We also know
that the proportions R2

C  and R2
I  are both 0.5. Will a sample of  40

schools, 10 pupils in each, be sufficient? We assume that the allocation
ratio is 0.5 to treatment, 0.5 to control. The value of  MJ-K is approxi-
mately 2.8 (see below).  

MDES=2.8*sqrt[(0.2*(1-0.5)/(0.5*0.5*40)+(1-0.2)*(1-0.5)/(0.5*0.5*40*10)] 

= 2.8*sqrt[0.01+0.004]

= 2.8*0.118

= 0.33

Since the calculated size is smaller than the stated effect size of 0.5, under
this design we are able to detect the specified size, so the design is satis-
factory. We would expect this, since the design without covariates was
already satisfactory, and this is a more powerful design. Under this
design, however, we could substantially reduce the sample size and, thus,
save money, or we could detect a smaller effect.  

Deciding on suitable values for the MDES 
formula

Many of the variables in this formula are the same as those listed in the
previous section. New variables are listed here. 

Multiplier, MJ-K

As in the previous formula, this depends on the ‘degrees of freedom’. In
the case of  no covariates, its value can be decided on the basis of  the
number of  clusters randomised, J. Here, we need to look at (J-K), the
difference between the number of  clusters and the number of  level-2
covariates. If  (J-K) exceeds about 20, the value of  the multiplier is
approximately 2.8 for a two-tailed test and 2.5 for a one-tailed test, given
power=0.80 and size=0.05 (Bloom, 1995).



52 A guide to running randomised controlled trials for educational researchers

R2C and R2I

If  values of  ρ can be difficult to find, R2
C and R2

I are likely to be even
more so. We can get an estimate of  these in background literature and
Bloom et al. (2007) give some results for elementary, middle and high
schools in the USA. 

Since the major contribution to this formula comes from the cluster
covariate effect, one can get a reasonable estimate simply from trying to
determine this. Even if  one assumes that R2

I is zero, the estimate is not
much weakened. This approach is applicable to the analysis of clustered
data proposed in this guide: using cluster means. Thus, in the previous
example, the MDES is now given by:  

MDES=2.8*sqrt[(0.2*(1-0.5)/(0.5*0.5*40)+(1-0.2)*(1-0)/(0.5*0.5*40*10)]

= 2.8*sqrt[0.01+0.008]

= 2.8*0.134

= 0.38

Looking at schools, Bloom et al. (2007) show that earlier years’
aggregated data can be a readily available and relatively valid source of
estimates of R2

C . A ballpark estimate could be obtained from the square
of the correlation of equivalent baseline and post-test scores for the age
group of interest.

It is emphasised that estimates of  R2
C, R2

I and ρ are likely to be
somewhat ad hoc. It will be desirable to leave a margin on any MDES
thus obtained. However, even the use of ad hoc estimates is likely to be
better than ignoring these crucial aspects of  a cluster randomised trial.
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7 Dropout: prevention is better 
than cure

It is helpful here to categorise types of  dropout (Shadish et al., 2002).

• Measurement attrition refers to a failure to complete outcome
measurement, whether or not treatment is completed. 

• Treatment attrition refers to those research participants who do not
continue treatment, whether or not they continue with the
measurement protocol. 

The best way of coping with dropout is to avoid it: prevention is better
than cure. Furthermore, it is better to prevent measurement attrition
even when you cannot prevent treatment attrition. This is because an
intention-to-treat analysis should be used regardless of  the extent of
treatment attrition (Torgerson and Torgerson, 2008). Addressing the
issue of  measurement attrition and, specifically, whether dropout is
treatment correlated, is more problematic and beyond the scope of this
guide. Shadish et al. (2002) provide an introduction to the issues with
appropriate further references. 

Strategies to prevent dropout

To take part in a properly executed experiment can represent quite a
serious commitment on the part of those involved. There are likely to be
self-study or training sessions, time commitments, change of  one’s
ordinary practice, testing (perhaps before and after) record-keeping and
an unwonted (and probably unwanted) degree of  supervision of  one’s
work. All of  these are likely to deter interest in actually carrying out a
project, and, even where signed up in the first instance, to continuing to
perform the tasks involved. One can imagine that this is even more likely
to occur for those in the control group, who do not even have the
excitement of implementing the new procedure. So how do we stop such
subjects dropping out?
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It is all too easy to think in terms of the experimenter (or the experiment
team) on the one hand, and the subjects on the other. Taking part in an
experiment represents a substantially greater commitment than filling in
a survey, generally, and it is important to take account of  this. Partici-
pants may have an interest and a degree of expertise in the topic, and a
commitment to doing things as well as possible. Thus it would be
valuable to have input from them in designing the intervention. Small
infelicities in the instructions can undermine important parts of an inter-
vention, and those familiar with the field can spot these before they ruin
the project.

The typical response of  a profession, presented with a possible new
‘magic potion’, will be either to demand that it is given to everyone or to
those most in need. The research team has to convince those likely to be
involved that it is worth taking part, and continuing. Crucially it also
means that the experimenter and participants all agree on the value of
the experimental approach, and that they will all agree to cooperate even
if  allocated to the unglamorous control group. This requires an under-
standing of  the principles of  randomisation (at least by the teachers
involved, say) in order that they understand the reason behind this
random denial of the intervention. 

It is, therefore, often appropriate to visit centres involved in the trial in
order to explain the methodology and obtain their support for the study.
Part of  this explanation could include an account of  the equipoise
principle. This holds that a subject may be enrolled in an RCT only if
there is true uncertainty about which of  the trial arms is most likely to
benefit them. In some ways this is rather a counter-intuitive requirement.
What would be the point of trying a new technique if  you did not believe
it was going to be helpful? The target audience is not just the person who
devised the scheme. Their colleagues must be convinced and, potentially,
education policy-makers. Even when experts agree that an innovation is
going to be beneficial, it can happen that it simply is not. Muir (2008)
quotes the cases of school driving lessons, Scared Straight programmes
and other initiatives which despite being ‘obviously beneficial’ in
advance, actually appeared to worsen the situation when trialled. 

Those taking part in an experiment should, if  at all possible, take part
because they believe in it, rather than for any other reasons. That said,
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there are stratagems and inducements which can help increase and
maintain cooperation.

• Ensure that randomisation happens after consent has been given. For
a trial where schools are randomised, agreement to participate can be
as low as 11 per cent (Smith et al., 2007). In the same study, 94 per cent
of schools that agreed were still on board by the end of the study and
returned completed post-intervention tests. Dropout was hence a
minor problem since randomisation of consenting schools was carried
out.  

• A delayed introduction approach can be used where one group gets
the initiative at the start and after the initiative is complete, the control
group also receives it. In practice, it is often necessary to ‘reward’ the
control group in this way to ensure that headteachers signing up to the
trial perceive some benefit to involvement. It could be that the
initiative shows no benefit or is detrimental, in which case such a plan
is problematic.  

• Schools could be offered help in coping with the assessments. Thus the
project could offer to pay for supply teacher cover for teachers
involved in administering assessments.

• Keep schools involved. A full and reasonably timely description of
pupil scores is likely to be of  interest to anyone taking part and this
can be supplied to schools at the end of the trial.

Lastly, it should be noted that the implementation of  the intervention
should mimic a real-life scenario. It is no good having some enthusiastic
proponent of the intervention materials phoning up schools to persuade
to use them properly; we are interested in how the intervention will
function in the real world. 
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explore the impact that 14–16 year olds have
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2 Widening 14–19 choices: support for
young people making informed decisions
This is a summary of key findings from NFER’s
recent work relating to 14–19 education in
order to understand better how young people
of this age group are navigating their way
through complex choices of qualifications 
and locations of study.
www.nfer.ac.uk/publications/SMD01/

3 Attitudes to reading at ages nine and
eleven: full report
In June 2007 NFER ran a reading survey
questionnaire to determine current attitudes 
to reading. The questions dealt with
enjoyment of reading and confidence 
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results of the questionnaire.
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4 The value of social care professionals
working in extended schools
As the collaboration between social care 
and education professionals develops, the
question of what role social care professionals
can take in school, as well as what should be
expected of them, is becoming increasingly
pertinent. This report looks at levels of
integration and the role of social care
professionals.
www.nfer.ac.uk/publications/SCX01/
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Randomised controlled trials (RCTs) are seen as 
the gold standard for evidence-based educational
practice. This guide examines when they should 
be used to evaluate an intervention and when 
other approaches may be more suitable. 
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